Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ectoine: a natural compound reduces lung inflammation

20.02.2013
Scientists from the IUF Leibniz Research Institute for Environmental Medicine in Düsseldorf, Germany, show that the extremolyte Ectoin® may positively influence lung inflammation associated with chronic obstructive pulmonary disease (COPD).

From earlier studies it was known that Ectoin has the potential to prevent the induction of lung inflammation. In the recent issue of the European Respiratory Journal (Feb 2013; 41:433-442) the scientists describe that application of ectoine has also the ability to ameliorate ongoing lung inflammation. doi:10.1183/09031936.00132211

Chronic obstructive pulmonary disease (COPD) is one of the most frequent diseases in modern society. According to the World Health Organization (WHO), in 2007, 210 million people worldwide suffered from COPD. The main cause for COPD is the inhalation of air pollutants like tobacco smoke or particulate matter mainly coming from combustion processes. Effective anti-inflammatory therapies like the inhalation of glucocorticoids (cortisone) do not significantly improve the health status of the patients. The inflammatory reaction of the lung caused by the inhalation of pollutants is mostly dominated by a cell type (neutrophilic granulocytes) which is insensitive to this group of drugs.

Together with the company bitop AG, researchers at the Leibniz Research Institute of Environmental Medicine in Düsseldorf, Germany, investigated the effects of the extremolyte ectoine in a series of preclinical studies. Ectoin is a natural compound produced by bacteria which are able to survive under extreme conditions. The substance is known to stabilize cells and protect them against environmental stress.

“Exposure of the lungs to air pollution still poses a problem for the inhabitants of industrialised countries, leading to diseases like COPD with a high economic burden, and it is expected that this disease will be ranked as number three of death causing diseases within the next years. The local application of cell-protecting molecules like Ectoin is a possible new option in the treatment of COPD“ states Dr. Klaus Unfried at the IUF.

Researchers in the group of Dr. Unfried were able to demonstrate the cell-protecting capacity of Ectoin in a system of environmentally induced lung inflammation. From earlier studies it was known that Ectoin has the potential to prevent the induction of lung inflammation. In the recent issue of the well recognized European Respiratory Journal (Feb 2013; 41:433-442) the scientists describe that application of ectoine has also the ability to ameliorate ongoing lung inflammation. Together with members of the department of Traumatology and Hand Surgery and the department of Angiology, Pneumology and Cardiology of the University Clinics Düsseldorf, they were able to show that after exposure to pollutants the life span of the inflammatory cells is prolonged and thereby the inflammation is likely to be increased. The application of Ectoin in the lung prevents this enhancement of the inflammation. The biophysical stabilization of the cells reverts natural cell death to a level as it would occur without the effect of pollutants and, therefore, leads to a reduction of the inflammation. The relevance of this mechanism for humans was demonstrated using inflammatory cells isolated from the blood of COPD patients.

“Different studies with ectoine-containing products have shown good results in efficacy and safety in the treatment of allergic rhinitis or atopic dermatitis. An Ectoin containing inhalation solution has already shown first positive proof of concept results after application with patients suffering from mild asthma or pollutant induced lung inflammation. Based on the actual results from the IUF we are optimistic to further explore potential applications in humans " says Dr. Andreas Bilstein, Director at bitop AG.

Contact:
Dr. Klaus Unfried
IUF Leibniz Research Institute for Environmental Medicine
Auf'm Hennekamp 50
40225 Düsseldorf Germany
Phone #49 (0) 211 3389-0
Klaus.Unfried@uni-duesseldorf.de

Dr. Katharina Beyen | idw
Further information:
http://www.iuf-duesseldorf.de

More articles from Health and Medicine:

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>