Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ectoine: a natural compound reduces lung inflammation

20.02.2013
Scientists from the IUF Leibniz Research Institute for Environmental Medicine in Düsseldorf, Germany, show that the extremolyte Ectoin® may positively influence lung inflammation associated with chronic obstructive pulmonary disease (COPD).

From earlier studies it was known that Ectoin has the potential to prevent the induction of lung inflammation. In the recent issue of the European Respiratory Journal (Feb 2013; 41:433-442) the scientists describe that application of ectoine has also the ability to ameliorate ongoing lung inflammation. doi:10.1183/09031936.00132211

Chronic obstructive pulmonary disease (COPD) is one of the most frequent diseases in modern society. According to the World Health Organization (WHO), in 2007, 210 million people worldwide suffered from COPD. The main cause for COPD is the inhalation of air pollutants like tobacco smoke or particulate matter mainly coming from combustion processes. Effective anti-inflammatory therapies like the inhalation of glucocorticoids (cortisone) do not significantly improve the health status of the patients. The inflammatory reaction of the lung caused by the inhalation of pollutants is mostly dominated by a cell type (neutrophilic granulocytes) which is insensitive to this group of drugs.

Together with the company bitop AG, researchers at the Leibniz Research Institute of Environmental Medicine in Düsseldorf, Germany, investigated the effects of the extremolyte ectoine in a series of preclinical studies. Ectoin is a natural compound produced by bacteria which are able to survive under extreme conditions. The substance is known to stabilize cells and protect them against environmental stress.

“Exposure of the lungs to air pollution still poses a problem for the inhabitants of industrialised countries, leading to diseases like COPD with a high economic burden, and it is expected that this disease will be ranked as number three of death causing diseases within the next years. The local application of cell-protecting molecules like Ectoin is a possible new option in the treatment of COPD“ states Dr. Klaus Unfried at the IUF.

Researchers in the group of Dr. Unfried were able to demonstrate the cell-protecting capacity of Ectoin in a system of environmentally induced lung inflammation. From earlier studies it was known that Ectoin has the potential to prevent the induction of lung inflammation. In the recent issue of the well recognized European Respiratory Journal (Feb 2013; 41:433-442) the scientists describe that application of ectoine has also the ability to ameliorate ongoing lung inflammation. Together with members of the department of Traumatology and Hand Surgery and the department of Angiology, Pneumology and Cardiology of the University Clinics Düsseldorf, they were able to show that after exposure to pollutants the life span of the inflammatory cells is prolonged and thereby the inflammation is likely to be increased. The application of Ectoin in the lung prevents this enhancement of the inflammation. The biophysical stabilization of the cells reverts natural cell death to a level as it would occur without the effect of pollutants and, therefore, leads to a reduction of the inflammation. The relevance of this mechanism for humans was demonstrated using inflammatory cells isolated from the blood of COPD patients.

“Different studies with ectoine-containing products have shown good results in efficacy and safety in the treatment of allergic rhinitis or atopic dermatitis. An Ectoin containing inhalation solution has already shown first positive proof of concept results after application with patients suffering from mild asthma or pollutant induced lung inflammation. Based on the actual results from the IUF we are optimistic to further explore potential applications in humans " says Dr. Andreas Bilstein, Director at bitop AG.

Contact:
Dr. Klaus Unfried
IUF Leibniz Research Institute for Environmental Medicine
Auf'm Hennekamp 50
40225 Düsseldorf Germany
Phone #49 (0) 211 3389-0
Klaus.Unfried@uni-duesseldorf.de

Dr. Katharina Beyen | idw
Further information:
http://www.iuf-duesseldorf.de

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>