Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Economics and evolution help scientists identify new strategy to control antibiotic resistance

21.03.2011
Research published in the journal GENETICS suggests ways to increase the cost of antibiotic resistance and prolong the usefulness of antibiotics

A team of scientists from the University of Oxford, U.K. have taken lessons from Adam Smith and Charles Darwin to devise a new strategy that could one day slow, possibly even prevent, the spread of drug-resistant bacteria.

In a new research report published in the March 2011 issue of GENETICS (http://www.genetics.org), the scientists show that bacterial gene mutations that lead to drug resistance come at a biological cost not borne by nonresistant strains. They speculate that by altering the bacterial environment in such a way to make these costs too great to bear, drug-resistant strains would eventually be unable to compete with their nonresistant neighbors and die off.

"Bacteria have evolved resistance to every major class of antibiotics, and new antibiotics are being developed very slowly; prolonging the effectiveness of existing drugs is therefore crucial for our ability to treat infections," said Alex Hall, Ph.D., a researcher involved in the work from the Department of Zoology at the University of Oxford. "Our study shows that concepts and tools from evolutionary biology and genetics can give us a boost in this area by identifying novel ways to control the spread of resistance."

The research team measured the growth rates of resistant and susceptible Pseudomonas aeruginosa bacteria in a wide range of laboratory conditions. They found that the cost of antibiotic resistance has a cost to bacteria, and can be eliminated by adding chemical inhibitors of the enzyme responsible for resistance to the drug. Leveling the playing field increased the ability of resistant bacteria to compete effectively against sensitive strains in the absence of antibiotics. Given that the cost of drug resistance plays an important role in preventing the spread of resistant bacteria, manipulating the cost of resistance may make it possible to prevent resistant bacteria from persisting after the conclusion of antibiotic treatment. For instance, new additives or treatments could render antibiotic resistance more costly for bacteria, making it less likely that the resistant strains will persist at the end of treatment.

"If we've learned one thing about microscopic organisms over the past century, it's that they evolve quickly, and that we can't stop the process," said Mark Johnston, Editor-in-Chief of the journal GENETICS. "This research turns this fact against the bacteria. This is an entirely new strategy for extending the useful life of antibiotics, and possibly for improving the potency of old ones."

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

The article can be found at:

The Fitness Cost of Rifampicin Resistance in Pseudomonas aeruginosa Depends on Demand for RNA Polymerase
Hall et al. 2011
http://www.genetics.org/cgi/content/abstract/187/3/817

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>