Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early treatment sparks striking brain changes in autism

When given early treatment, children with autism spectrum disorders (ASD) made significant improvements in behavior, communication, and most strikingly, brain function, Yale School of Medicine researchers report in a new study.

The study was published in the current issue of the Journal of Autism and Developmental Disorders by Yale Child Study Center researchers Fred Volkmar, M.D., Kevin A. Pelphrey, and their colleagues.

The results suggest that brain systems supporting social perception respond well to an early intervention behavioral program called pivotal response treatment. This treatment includes parent training, and employs play in its methods.

ASDs are complex neurobiological disorders that inhibit a person's ability to communicate and develop social relationships, and are often accompanied by behavioral challenges. Until recently, autism diagnosis typically did not occur until a child was about three- to five-years-old, and treatment programs were geared for this older age group. Today, Volkmar and his team are diagnosing children as young as age one. Pivotal response treatment, developed at the University of California-Santa Barbara, combines developmental aspects of learning and development, and is easy to implement in children younger than age two.

In the current study, the team used functional magnetic resonance imaging — for the first time — to measure changes in brain activity after two five-year-olds with ASD received pivotal response treatment. Study co-author Pamela Ventola used this treatment method to identify distinct behavioral goals for each child in the study, and then reinforced these targeted skills with treatment involving motivational play activities.

The team found that children who received this treatment showed improvements in behavior, and being able to talk to other people. In addition, the MRI and electroencephalogram revealed increased brain activity in the regions supporting social perception.

Their results are from two children, but the researchers are currently conducting a full-scale study of 60 children. Pelphrey said that while both children in the current study received the same type of treatment for ASD, the results were not homogenous because ASD is a multi-faceted disorder that has a unique effect on each child. Some children with ASD function on a higher level than others, for example.

"ASD is a heterogeneous disorder, and research aimed at understanding treatment must address this heterogeneity," said Pelphrey. "Both the children in our current study made progress, but their degree of progress and level of skills at the end of treatment were distinct."

Volkmar sees these results as a first step in a novel approach to treatment planning. "Autism research has come a long way," he said. "These findings are exciting because they show that early intervention works in autism."


Other authors on the study included first author Avery C. Voos, Jonathan Tirrell, Danielle Bolling, Brent Vander Wyk, Martha D. Kaiser, and James C. McPartland.

Funding for the study came from the Harris Professorship at Yale Child Study Center given to Kevin A. Pelphrey; Allied World; and National Institute of Mental Health grant K23MH86785. This research was also made possible by CTSA Grant Number UL1 RR024139 from the National Center for Advancing Translational Sciences (NCATS), a component of the National Institutes of Health (NIH), and NIH roadmap for Medical Research.

Citation: Journal of Autism and Developmental Disorders, Doi: 10.1007/s10803-012-1683-9

Karen N. Peart | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>