Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early PET response to neoadjuvant chemo predicts increased survival in sarcoma patients

03.04.2012
An early Positron Emission Tomography (PET) response after the initial cycle of neoadjuvant chemotherapy can be used to predict increased survival in patients with soft tissue sarcomas, according to a study by researchers with UCLA's Jonsson Comprehensive Cancer Center.

Prior studies by this multidisciplinary team of physician scientists at the Jonsson Cancer Center had shown that use of FDG PET/computed tomography (CT) could determine pathologic response after the first dose of chemotherapy drugs.

The researchers then wondered if the patients showing a significant PET response after the first round of chemotherapy also were surviving longer, said Dr. Fritz Eilber, an associate professor of surgical oncology, director of the Sarcoma Program at UCLA's Jonsson Cancer Center and senior author of the study.

"We did find that patients who experienced an early PET response to treatment had significantly increased survival," Eilber said. "This is vital because patients want to know if the drugs are working and what that says about their ultimate outcome."

The study was published April 1, 2012 in Clinical Cancer Research, a peer-reviewed journal of the American Association of Cancer Research.

In this study, 39 patients with soft tissue sarcoma underwent a PET scan to measure their tumor's metabolism, or how much glucose was being taken up by the tumor, prior to getting chemotherapy. The patients were given another PET scan after the first round of chemotherapy. Those whose tumors demonstrated a 25 percent or more decrease in metabolic activity – a response considered significant - were determined later to have significant increased survival rates compared to those patients who had less than a 25 percent decrease, Eilber said.

"It's an important finding because we can now identify whether patients are getting the right chemotherapy very quickly," Eilber said. "Patients don't want to have to wait until the cancer recurs or they die to find out whether their chemotherapy worked or not."

Going forward, Eilber and his team are working to design new molecular imaging tools that may tell them even more about a patient's cancer beyond the conventional FDG probe.

"Just looking at the size of the tumor is not good enough anymore," Eilber said. "We want to image what's happening within the tumor in real time."

The study was funded by the In vivo Cellular and Molecular Imaging Center at UCLA's Jonsson Comprehensive Cancer Center and the Department of Energy.

"This study suggests that PET allows survival predictions after the initial cycle of neoadjuvant chemotherapy and might therefore potentially serve as an early endpoint biomarker," the study states. "Such information cannot be derived from CT scanning based on serial tumor size measurements. The ability to assess treatment response early during the course of therapy can potentially guide management decisions. Treatment could be switched from neoadjuvant chemotherapy to immediate surgery in non-responding patients, while it would be continued in responders. Such risk adapted therapy could reduce treatment associated morbidity and costs."

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2011, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 11 of the last 12 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: Cancer Comprehensive Cancer Center FDG PET scan

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>