Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early immune response needed for hit-and-hide cancer viruses

15.01.2010
Retroviruses such as HIV and HTLV-1 don't hit-and-run, they hit-and-hide. They slip into host cells and insert their own DNA into the cell's DNA, and from this refuge they establish an infection that lasts a lifetime.

But that infection might be much less troublesome and much more manageable if the immune system could mount a strong response to the virus during its first few days in the body, according to a new study by cancer researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James).

The animal study, published online in the journal Blood, examined the human T-lymphotropic virus type 1 (HTLV-1), which causes adult T-cell leukemia and several inflammatory diseases in some people.

"Our findings indicate that if the immune system could respond strongly to HTLV-1 and kill infected target cells early, it may inhibit the virus's ability to establish reservoirs of infected cells and make the infection more manageable later," says principal investigator Michael Lairmore, a professor and chair of veterinary biosciences and a cancer researcher at OSUCCC-James.

"This study tells us that the more we know about the earliest events of infection, the more it will help us develop vaccines and might block those events."

Lairmore and his colleagues examined HTLV-I infection in rabbits that were treated with the drug cyclosporin A, which is commonly used to suppress the immune system in people following organ transplantation. The researchers compared animals treated with this drug prior to viral infection with those given the drug one week after infection.

This study builds on earlier work by Lairmore and his colleagues showing that HTLV-I produces proteins that activate infected immune cells and causes them to divide, thereby increasing the number of infected cells in the body. The researchers found that cyclosporin A blocked that activation.

In this new study, the researchers used cyclosporin A to learn whether modifying the immune response – by providing fewer immune cells for the virus to attack – at a critical time, after the first week of infection when the virus needs to spread, would influence the extent of the infection weeks later.

In animals given the immune-suppressing drug first, the virus flourished. The number of virus copies jumped to 200 per 10,000 immune cells (lymphocytes), compared with 40 per 10,000 immune cells in control animals (these were infected with the virus but not given the drug). After a week or two, the number of virus copies fell, ranging from 113 to 160 for remainder of the 10-week experiment.

In the animals that were given the virus first and then the immune-suppressing drug a week later, on the other hand, the virus languished. The number of virus copies in these animals was lower than the controls, and it remained that way throughout the 10-week experiment. At week four after infection, for example, the immune-suppressed animals had on average nine virus copies per 10,000 immune cells, compared with 40 copies in control samples. At week 10, they had 10 virus copies compared with 30 in controls.

"The first experiment told us that if the immune system is suppressed, the viral load goes up – and we expected that," says Lairmore. "The second group was the surprise. Their viral load was low from the start, and it stayed that way. We didn't expect that. We thought the virus would recover and come back up.

"Collectively, our findings indicate that the immune system plays a key role in controlling HTLV-1 spread during early infection, which has important implications for a vaccine against this virus and for therapy for HTLV-1-associated diseases," says Lairmore.

This research was supported by a National Cancer Institute Program Project Grant headed by Lairmore, and by a National Institute of Health Career Development Award.

Other Ohio State researchers involved in this study were Rashade A. H. Haynes II, Evan Ware, Christopher Premanandan, Bevin Zimmerman, Lianbo Yu and Andrew J. Phipps.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>