Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early cerebellum injury hinders neural development, possible root of autism

03.09.2014

A brain region largely known for coordinating motor control has a largely overlooked role in childhood development that could reveal information crucial to understanding the onset of autism, according to Princeton University researchers.

The cerebellum — an area located in the lower rear of the brain — is known to process external and internal information such as sensory cues that influence the development of other brain regions, the researchers report in the journal Neuron. Based on a review of existing research, the researchers offer a new theory that an injury to the cerebellum during early life potentially disrupts this process and leads to what they call "developmental diaschisis," which is when a loss of function in one part of the brain leads to problems in another region.

Autism Causes

Princeton University researchers offer a new theory that an early-life injury to the cerebellum disrupts the brain's processing of external and internal information and leads to 'developmental diaschisis,' wherein a loss of function in one brain region leads to problems in another. Applied to autism, cerebellar injury could hinder how other areas of the brain interpret external stimuli and organize internal processes. Based on a review of existing research, the researchers found that a cerebellar injury at birth can make a person 36 times more likely to score highly on autism screening tests, and is the largest uninherited risk.

Credit: Samuel Wang

The researchers specifically apply their theory to autism, though they note that it could help understand other childhood neurological conditions. Conditions within the autism spectrum present "longstanding puzzles" related to cognitive and behavioral disruptions that their ideas could help resolve, they wrote. Under their theory, cerebellar injury causes disruptions in how other areas of the brain develop an ability to interpret external stimuli and organize internal processes, explained first author Sam Wang, an associate professor of molecular biology and the Princeton Neuroscience Institute (PNI).

"It is well known that the cerebellum is an information processor. Our neocortex [the largest part of the brain, responsible for much higher processing] does not receive information unfiltered. There are critical steps that have to happen between when external information is detected by our brain and when it reaches the neural cortex," said Wang, who worked with doctoral student Alexander Kloth and postdoctoral research associate Aleksandra Badura, both in PNI.

"At some point, you learn that smiling is nice because Mom smiles at you. We have all these associations we make in early life because we don't arrive knowing that a smile is nice," Wang said. "In autism, something in that process goes wrong and one thing could be that sensory information is not processed correctly in the cerebellum."

Mustafa Sahin, a neurologist at Boston's Children Hospital and associate professor of neurology at Harvard Medical School, said that Wang and his co-authors build upon known links between cerebellar damage and autism to suggest that the cerebellum is essential to healthy neural development. Numerous studies — including from his own lab — support their theory, said Sahin, who is familiar with the work but was not involved in it.

"The association between cerebellar deficits and autism has been around for a while," Sahin said. "What Sam Wang and colleagues do in this perspective article is to synthesize these two themes and hypothesize that in a critical period of development, cerebellar dysfunction may disrupt the maturation of distant neocortical circuits, leading to cognitive and behavioral symptoms including autism."

Traditionally, the cerebellum has been studied in relation to motor movement and coordination in adults. Recent studies, however, strongly suggest that it also influences childhood cognition, Wang said. Several studies also have found a correlation between cerebellar injury and the development of a disorder in the autism spectrum, the researchers report. For instance, the researchers cite a 2007 paper in the journal Pediatrics that found that individuals who experienced cerebellum damage at birth were 40 times more likely to score highly on autism screening tests. They also reference studies in 2004 and 2005 that found that the cerebellum is the most frequently disrupted brain region in people with autism.

"What we realized from looking at the literature is that these two problems — autism and cerebellar injury — might be related to each other" via the cerebellum's influence on wider neural development, Wang said. "We hope to get people and scientists thinking differently about the cerebellum or about autism so that the whole field can move forward."

The researchers conclude by suggesting methods for testing their theory. First, by inactivating brain-cell electrical activity, it should be possible to pinpoint the developmental stage in which injury to one part of the brain affects the maturation of another. A second, more advanced method is to reconstruct the neural connections between the cerebellum and other brain regions; the federal BRAIN Initiative announced in 2013 aims to map the activity of all the brain's neurons. Finally, mouse brains can be used to disable and restore brain-region function to observe the "upstream" effect in other areas.

###

The paper, "The cerebellum, sensitive periods, and autism," was published Aug. 6 in Neuron. The work was supported by grants from the National Institutes of Health (grant nos. R01 NS045193 and F31 MH098651), the Nancy Lurie Marks Family Foundation, and the Sutherland Cook Fund.

Morgan Kelly | Eurek Alert!
Further information:
http://www.princeton.edu

Further reports about: PNI activity behavioral cerebellar cerebellum cognitive damage injury internal neural problems root sensory spectrum

More articles from Health and Medicine:

nachricht Imaging test may identify biomarker of Alzheimer's disease
27.05.2015 | Radiological Society of North America

nachricht Advance in regenerative medicine
27.05.2015 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Advance in regenerative medicine

27.05.2015 | Health and Medicine

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>