Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early cerebellum injury hinders neural development, possible root of autism

03.09.2014

A brain region largely known for coordinating motor control has a largely overlooked role in childhood development that could reveal information crucial to understanding the onset of autism, according to Princeton University researchers.

The cerebellum — an area located in the lower rear of the brain — is known to process external and internal information such as sensory cues that influence the development of other brain regions, the researchers report in the journal Neuron. Based on a review of existing research, the researchers offer a new theory that an injury to the cerebellum during early life potentially disrupts this process and leads to what they call "developmental diaschisis," which is when a loss of function in one part of the brain leads to problems in another region.

Autism Causes

Princeton University researchers offer a new theory that an early-life injury to the cerebellum disrupts the brain's processing of external and internal information and leads to 'developmental diaschisis,' wherein a loss of function in one brain region leads to problems in another. Applied to autism, cerebellar injury could hinder how other areas of the brain interpret external stimuli and organize internal processes. Based on a review of existing research, the researchers found that a cerebellar injury at birth can make a person 36 times more likely to score highly on autism screening tests, and is the largest uninherited risk.

Credit: Samuel Wang

The researchers specifically apply their theory to autism, though they note that it could help understand other childhood neurological conditions. Conditions within the autism spectrum present "longstanding puzzles" related to cognitive and behavioral disruptions that their ideas could help resolve, they wrote. Under their theory, cerebellar injury causes disruptions in how other areas of the brain develop an ability to interpret external stimuli and organize internal processes, explained first author Sam Wang, an associate professor of molecular biology and the Princeton Neuroscience Institute (PNI).

"It is well known that the cerebellum is an information processor. Our neocortex [the largest part of the brain, responsible for much higher processing] does not receive information unfiltered. There are critical steps that have to happen between when external information is detected by our brain and when it reaches the neural cortex," said Wang, who worked with doctoral student Alexander Kloth and postdoctoral research associate Aleksandra Badura, both in PNI.

"At some point, you learn that smiling is nice because Mom smiles at you. We have all these associations we make in early life because we don't arrive knowing that a smile is nice," Wang said. "In autism, something in that process goes wrong and one thing could be that sensory information is not processed correctly in the cerebellum."

Mustafa Sahin, a neurologist at Boston's Children Hospital and associate professor of neurology at Harvard Medical School, said that Wang and his co-authors build upon known links between cerebellar damage and autism to suggest that the cerebellum is essential to healthy neural development. Numerous studies — including from his own lab — support their theory, said Sahin, who is familiar with the work but was not involved in it.

"The association between cerebellar deficits and autism has been around for a while," Sahin said. "What Sam Wang and colleagues do in this perspective article is to synthesize these two themes and hypothesize that in a critical period of development, cerebellar dysfunction may disrupt the maturation of distant neocortical circuits, leading to cognitive and behavioral symptoms including autism."

Traditionally, the cerebellum has been studied in relation to motor movement and coordination in adults. Recent studies, however, strongly suggest that it also influences childhood cognition, Wang said. Several studies also have found a correlation between cerebellar injury and the development of a disorder in the autism spectrum, the researchers report. For instance, the researchers cite a 2007 paper in the journal Pediatrics that found that individuals who experienced cerebellum damage at birth were 40 times more likely to score highly on autism screening tests. They also reference studies in 2004 and 2005 that found that the cerebellum is the most frequently disrupted brain region in people with autism.

"What we realized from looking at the literature is that these two problems — autism and cerebellar injury — might be related to each other" via the cerebellum's influence on wider neural development, Wang said. "We hope to get people and scientists thinking differently about the cerebellum or about autism so that the whole field can move forward."

The researchers conclude by suggesting methods for testing their theory. First, by inactivating brain-cell electrical activity, it should be possible to pinpoint the developmental stage in which injury to one part of the brain affects the maturation of another. A second, more advanced method is to reconstruct the neural connections between the cerebellum and other brain regions; the federal BRAIN Initiative announced in 2013 aims to map the activity of all the brain's neurons. Finally, mouse brains can be used to disable and restore brain-region function to observe the "upstream" effect in other areas.

###

The paper, "The cerebellum, sensitive periods, and autism," was published Aug. 6 in Neuron. The work was supported by grants from the National Institutes of Health (grant nos. R01 NS045193 and F31 MH098651), the Nancy Lurie Marks Family Foundation, and the Sutherland Cook Fund.

Morgan Kelly | Eurek Alert!
Further information:
http://www.princeton.edu

Further reports about: PNI activity behavioral cerebellar cerebellum cognitive damage injury internal neural problems root sensory spectrum

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>