Early cardiac risks linked to worse cognitive function in middle age

Young adults with such cardiac risk factors as high blood pressure and elevated glucose levels have significantly worse cognitive function in middle age, according to a new study by dementia researchers at UC San Francisco.

The findings bolster the view that diseases like Alzheimer's develop over an individual's lifespan and may be set in motion early in life. And they offer hope that young adults may be able to lower their risk of developing dementia through diet and exercise, or even by taking medications.

“These cardiovascular risk factors are all quite modifiable,” said senior author Kristine Yaffe, MD, a professor in the departments of Psychiatry, Neurology, and Epidemiology and Biostatistics at UCSF, who holds the Roy and Marie Scola Endowed Chair in Psychiatry.

“We already know that reducing these risk factors in midlife can decrease the risk of dementia in old age,” continued Yaffe, who is also Chief of Geriatric Psychiatry and Director of the Memory Disorders Clinic at the San Francisco VA Medical Center. “If it turns out that the damage begins before middle age, we may need to expand our focus and work on reducing heart disease risks in earlier stages of life.”

The study, published March 31 in Circulation, examines data from more than 3,300 18- to 30-year-olds in the Coronary Artery Risk Development in Young Adults (CARDIA) study, which began enrolling thousands of participants nationwide in 1985 to understand how heart disease develops in black and white adults.

Cardiac risk factors were measured every two to five years for 25 years, at which point those in the study underwent tests to measure their executive function, cognitive processing speed and verbal memory.

Those whose blood pressure and glucose exceeded recommended levels during the 25-year study performed worse on all three tests, while high cholesterol was associated only with poor verbal memory.

The authors cited a number of mechanisms by which elevated blood pressure and glucose could diminish cognition in middle age, such as by reducing blood supply to the brain, causing changes in brain structure and increasing inflammation and oxidative stress, which can damage neurons. Another possibility is that these risk factors may interfere with the clearance of amyloid proteins associated with Alzheimer's disease.

Since cognitive function was not measured at the beginning of the study, the authors could not estimate the cognitive change caused by these risk factors.

###

Co-authors of the study are Eric Vittinghoff, PhD, and Mark J. Pletcher, MD, MPH, of UCSF; Tina Hoang, MSPH, of the Northern California Institute for Research and Education, San Francisco; Lenore Launer, PhD, of the National Institute on Aging; Rachel Whitmer, PhD, and Stephen Sidney, MD, of Kaiser Permanente of Northern California, Oakland; and Laura H. Coker, PhD, of Wake Forest School of Medicine, Winston-Salem, NC.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Media Contact

Laura Kurtzman EurekAlert!

More Information:

http://www.ucsf.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors