Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duration of lactation associated with bone density

06.11.2015

Maternal bone density decreases after childbirth, but only among women who lactate for at least four months. The lactation period is unrelated to vitamin D status. A PhD thesis at Sahlgrenska Academy has explored the issue.

The most important role of vitamin D is to help maintain calcium homeostasis in the body. According to some hypotheses, there is a correlation between maternal vitamin D status and bone density during pregnancy and lactation.


Petra Brembeck, Researcher, Sahlgrenska Academy, University of Gothenburg

University of Gothenburg

A recently completed PhD thesis at Sahlgrenska Academy, University of Gothenburg, identified an association between lactation period and bone density, though unrelated to vitamin D status.

No change in vitamin D status

“We hypothesized that levels of vitamin D might decrease among women with long lactation periods, given its presence in breast milk,” says Petra Brembeck, a researcher at Sahlgrenska Academy. “But we did not identify any change in average vitamin D status during the first year after childbirth or any relationship between lactation period and vitamin D levels.”

Exposure to the sun (extrapolated from the time of the year and travel to southern latitudes) and consumption of vitamin D supplements were the only factors that affected maternal vitamin D status.

Bone density decreased

The study did find, however, that bone density decreased by as much as 4% (particularly in the lumbar spine, hip and shin) during the first 4 months after childbirth, but only if the lactation period lasted for at least that long. If lactation lasted for at least 9 months, bone density was still below baseline when followed up at 18 months.

95 women

The study monitored 95 subjects for 18 months after childbirth. Maternal bone density and vitamin D status were both assessed at each appointment.

“A longer lactation period was related to increased reduction of bone density, whereas greater body weight shown the opposite correlation,” Dr. Brembeck says. “Our findings also suggest that high calcium intake might have a protective effect against bone density changes.”

Future research will require follow-up periods of more than 18 months to determine whether women who lactate longer full recover their bone minerals after weaning or whether the changes may increase the risk of fractures later in life.

Link to thesis: https://gupea.ub.gu.se/handle/2077/39545

For additional information, feel free to contact:
Petra Brembeck, Researcher, Sahlgrenska Academy, University of Gothenburg
petra.brembeck@gu.se

Facts about the study
The study included 95 pregnant women and 20 controls who were neither pregnant nor lactating. Each of them had five appointments from third trimester of pregnancy to 18 months after childbirth. They gave blood samples to determine serum concentrations of 25-hydroxyvitamin D and responded to a questionnaire about lactation and exposure to the sun. Their bone status was assessed each time postpartum with dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT).

Weitere Informationen:

http://www.gu.se/english/about_the_university/news-calendar/News_detail/?languag...

Calle Björned | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>