Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New drugs, new ways to target androgens in prostate cancer therapy

Prostate cancer cells require androgens including testosterone to grow. A recent review in the British Journal of Urology International describes new classes of drugs that target androgens in novel ways, providing alternatives to the traditional methods that frequently carry high side effects.
“In many ways, therapies for prostate cancer have led the way in the fight against the disease,” says E. David Crawford, MD, investigator at the University of Colorado Cancer Center and review co-author. “The first effective oral therapy for any cancer was estrogen which was described in 1941. The first cancer biomarker that allowed diagnosis and staging was prostatic acid phosphatase back in 1938. Then there was little progress for over four decades.”

During those 40 years, in which early work in prostate cancer led to Nobel prizes for researchers Charles Huggins and Andrew Schally, other cancer types capitalized on this research, notably developing hormone therapies targeting estrogen in breast cancer. But work in prostate cancer stalled.

“What we realized is that production of androgens like testosterone depends on an intact system in which the brain recognizes hormone levels, signals the pituitary to increase or decrease production, and the pituitary in turn sets the testes in motion. Additionally, by targeting the production of androgens by the testes, we could break that system at many other points,” Crawford says.

For example, estrogen is similar enough to testosterone that administering estrogen to patients tricked the brain into thinking testosterone hormone levels were high – with high presumed hormone levels, the brain sent no production signal to the pituitary. But estrogen therapy led to side effects including breast enlargement.

The next class of drugs, known as luteinizing hormone releasing hormones or LHRHs, intervened in this signaling chain at the level of the pituitary. Just as estrogen keeps the brain from signaling for more testosterone, LHRHs keep the pituitary from passing messages to the testes.

“Because the effects of LHRHs are reversible, this allowed us to use hormone-targeting therapies much earlier in the disease,” Crawford says. “But LHRHs lead to an initial spike in testosterone, before it decreases.” Most patients can withstand this spike, but for some, for example those with bone metastasis in the back, a spike in testosterone could flare the disease and lead to spinal complications.

“It was only about ten years ago that somebody was able to make a usable antagonist,” Crawford says. Instead of first spiking and then lowering testosterone, these LHRH antagonists lead to an immediate drop.

And instead of targeting the signaling pathway that leads to the production of androgens including testosterone, androgen antagonists like Enzalutamide (formerly known as MDV3100), currently in phase III clinical trials, target cells’ ability to trap testosterone that exists in the body – it doesn’t matter how much testosterone is floating around, as long as prostate cancer cells are unable to grab it. Specifically, Enzalutamide and other androgen antagonists are easier to “catch” than the androgens themselves, and so cells grab Enzalutamide and are then unable to grab testosterone.

Also new to the field are drugs that block the production of androgens from all sources which of course includes the testes, but also includes blocking the smaller amounts produced by the adrenals and even by the cancer itself. This class of drugs is called androgen biosynthesis inhibitors, and the first approved is a drug called abiraterone or Zytiga.

“Targeting cells’ androgen receptors is a new and exciting development in the field of prostate cancer therapy,” Crawford says. “As these new drugs make their way from the lab to clinic, we expect the ability to offer androgen antagonists to patients whose cancers have resisted other treatments.”

Dr. Crawford wishes to disclose that he is an advisor to the company Medivation, which manufactures the drug Enzolutamide.

Erika Matich | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>