Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting (drugs) under your skin

17.09.2012
Using ultrasound waves, researchers boost skin’s permeability to drugs.

Using ultrasound waves, MIT engineers have found a way to enhance the permeability of skin to drugs, making transdermal drug delivery more efficient. This technology could pave the way for noninvasive drug delivery or needle-free vaccinations, according to the researchers.

“This could be used for topical drugs such as steroids — cortisol, for example — systemic drugs and proteins such as insulin, as well as antigens for vaccination, among many other things,” says Carl Schoellhammer, an MIT graduate student in chemical engineering and one of the lead authors of a recent paper on the new system.

Ultrasound — sound waves with frequencies greater than the upper limit of human hearing — can increase skin permeability by lightly wearing away the top layer of the skin, an effect that is transient and pain-free.

In a paper appearing in the Journal of Controlled Release, the research team found that applying two separate beams of ultrasound waves — one of low frequency and one of high frequency — can uniformly boost permeability across a region of skin more rapidly than using a single beam of ultrasound waves.

Senior authors of the paper are Daniel Blankschtein, the Herman P. Meissner ’29 Professor of Chemical Engineering at MIT, and Robert Langer, the David H. Koch Institute Professor at MIT. Other authors include Baris Polat, one of the lead authors and a former doctoral student in the Blankschtein and Langer groups, and Douglas Hart, a professor of mechanical engineering at MIT.

Two frequencies are better than one

When ultrasound waves travel through a fluid, they create tiny bubbles that move chaotically. Once the bubbles reach a certain size, they become unstable and implode. Surrounding fluid rushes into the empty space, generating high-speed “microjets” of fluid that create microscopic abrasions on the skin. In this case, the fluid could be water or a liquid containing the drug to be delivered.

In recent years, researchers working to enhance transdermal drug delivery have focused on low-frequency ultrasound, because the high-frequency waves don’t have enough energy to make the bubbles pop. However, those systems usually produce abrasions in scattered, random spots across the treated area.

In the new study, the MIT team found that combining high and low frequencies offers better results. The high-frequency ultrasound waves generate additional bubbles, which are popped by the low-frequency waves. The high-frequency ultrasound waves also limit the lateral movement of the bubbles, keeping them contained in the desired treatment area and creating more uniform abrasion, Schoellhammer says.

“It’s a very innovative way to improve the technology, increasing the amount of drug that can be delivered through the skin and expanding the types of drugs that could be delivered this way,” says Samir Mitragotri, a professor of chemical engineering at the University of California at Santa Barbara, who was not part of the research team.

The researchers tested their new approach using pig skin and found that it boosted permeability much more than a single-frequency system. First, they delivered the ultrasound waves, then applied either glucose or inulin (a carbohydrate) to the treated skin. Glucose was absorbed 10 times better, and inulin four times better. “We think we can increase the enhancement of delivery even more by tweaking a few other things,” Schoellhammer says.

Noninvasive drug delivery

Such a system could be used to deliver any type of drug that is currently given by capsule, potentially increasing the dosage that can be administered. It could also be used to deliver drugs for skin conditions such as acne or psoriasis, or to enhance the activity of transdermal patches already in use, such as nicotine patches.

Ultrasound transdermal drug delivery could also offer a noninvasive way for diabetics to control their blood sugar levels, through short- or long-term delivery of insulin, the researchers say. Following ultrasound treatment, improved permeability can last up to 24 hours, allowing for delivery of insulin or other drugs over an extended period of time.

Such devices also hold potential for administering vaccines, according to the researchers. It has already been shown that injections into the skin can induce the type of immune response necessary for immunization, so vaccination by skin patch could be a needle-free, pain-free way to deliver vaccines. This would be especially beneficial in developing countries, since the training required to administer such patches would be less intensive than that needed to give injections. The Blankschtein and Langer groups are now pursuing this line of research.

They are also working on a prototype for a handheld ultrasound device, and on ways to boost skin permeability even more. Safety tests in animals would be needed before human tests can begin. The U.S. Food and Drug Administration has previously approved single-frequency ultrasound transdermal systems based on Langer and Blankschtein’s work, so the researchers are hopeful that the improved system will also pass the safety tests.

The research was funded by the National Institutes of Health.

Written by: Anne Trafton, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>