Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug that targets vasculature growth attacks aggressive thyroid cancer

18.05.2009
A medication that helps stop the growth of new blood vessels has produced dramatic benefits for some patients with aggressive thyroid cancer, research from Mayo Clinic indicates.

At the annual meeting of the American Society of Clinical Oncology (ASCO), Mayo investigators report that cancer in about two-thirds of 37 patients with aggressive differentiated thyroid cancer treated with the drug pazopanib either stopped growing, or quickly shrank.

The patient responses seen to date are promising, the researchers say, because all patients had fast-growing cancers that had spread to their lungs, with half involving lymph nodes and 39 percent also involving bones.

"The benefits were striking in many patients to a degree we have not previously seen in thyroid cancer in response to other therapies, including the standard treatment of radioiodine," says Keith Bible, M.D., Ph.D., a medical oncologist and researcher who led the multicenter clinical trial funded by the National Cancer Institute. Most of the patients treated were enrolled at the Mayo Clinic campuses in Minnesota and Florida.

Approximately one-third of patients achieved sustained and dramatic benefit from pazopanib, while another one-third experienced stabilization of their cancer or some tumor shrinkage. The remaining one-third of patients did not benefit from the drug. The agent was also well tolerated by the majority of patients, Dr. Bible adds.

What is not yet known, however, is the drug's effect on overall survival. "We need more time to establish that definitively," says Dr. Bible. "The trial has been going on for just over a year, and some of our patients are still maintaining a response, while others have not been in the study long enough for us to confirm duration of response." He notes that of the 37 original trial participants, two have died — one from cancer progression and another from other causes.

The National Cancer Institute estimated that 37,340 new cases of thyroid cancer would be diagnosed in 2008, with 1,590 deaths from the cancer. The cancer is much more common in women; it is the seventh most common cancer in women in the U.S. The occurrence of thyroid cancer has recently been rising.

Most thyroid cancers are of two major "differentiated" types — papillary thyroid cancer (the most common, accounting for 75 percent of cases) and follicular thyroid cancer (15 percent).

Fortunately, most patients with thyroid cancer respond well to surgery and to follow-up treatment with radioiodine; even if the cancer recurs and spreads, the disease progresses slowly in most patients, Dr. Bible says. "Many patients do well for a long time without the need of additional therapy," he says. However, about 5 percent of these patients experience rapidly progressing life-threatening disease that is insensitive to radioiodine and other treatment approaches. "Until only recently, we have not had any effective therapies for such patients."

Pazopanib is an experimental agent that is also being studied in advanced kidney, ovarian and other cancers. The drug, administered in pill form, targets proteins involved in angiogenesis, the growth of new blood vessels that has a critical role in the growth and spread of tumors. The proteins that pazopanib targets include vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), c-kit and Ret.

Mayo investigators are also leading clinical trials to test pazopanib in two other thyroid cancer subtypes -medullary, which does not respond to radioiodine, and anaplastic, the most aggressive subtype.

Dr. Bible says plans are also under way to test pazopanib in a larger, controlled and randomized clinical trial of patients with advanced differentiated thyroid cancer. Researchers want to more accurately assess benefits and risks.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

VIDEO ALERT: Additional audio and video resources, including excerpts from an interview with Dr. Keith Bible describing the research, are available on the Mayo Clinic News Blog.

Karl Oestreich | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>