Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug that targets vasculature growth attacks aggressive thyroid cancer

18.05.2009
A medication that helps stop the growth of new blood vessels has produced dramatic benefits for some patients with aggressive thyroid cancer, research from Mayo Clinic indicates.

At the annual meeting of the American Society of Clinical Oncology (ASCO), Mayo investigators report that cancer in about two-thirds of 37 patients with aggressive differentiated thyroid cancer treated with the drug pazopanib either stopped growing, or quickly shrank.

The patient responses seen to date are promising, the researchers say, because all patients had fast-growing cancers that had spread to their lungs, with half involving lymph nodes and 39 percent also involving bones.

"The benefits were striking in many patients to a degree we have not previously seen in thyroid cancer in response to other therapies, including the standard treatment of radioiodine," says Keith Bible, M.D., Ph.D., a medical oncologist and researcher who led the multicenter clinical trial funded by the National Cancer Institute. Most of the patients treated were enrolled at the Mayo Clinic campuses in Minnesota and Florida.

Approximately one-third of patients achieved sustained and dramatic benefit from pazopanib, while another one-third experienced stabilization of their cancer or some tumor shrinkage. The remaining one-third of patients did not benefit from the drug. The agent was also well tolerated by the majority of patients, Dr. Bible adds.

What is not yet known, however, is the drug's effect on overall survival. "We need more time to establish that definitively," says Dr. Bible. "The trial has been going on for just over a year, and some of our patients are still maintaining a response, while others have not been in the study long enough for us to confirm duration of response." He notes that of the 37 original trial participants, two have died — one from cancer progression and another from other causes.

The National Cancer Institute estimated that 37,340 new cases of thyroid cancer would be diagnosed in 2008, with 1,590 deaths from the cancer. The cancer is much more common in women; it is the seventh most common cancer in women in the U.S. The occurrence of thyroid cancer has recently been rising.

Most thyroid cancers are of two major "differentiated" types — papillary thyroid cancer (the most common, accounting for 75 percent of cases) and follicular thyroid cancer (15 percent).

Fortunately, most patients with thyroid cancer respond well to surgery and to follow-up treatment with radioiodine; even if the cancer recurs and spreads, the disease progresses slowly in most patients, Dr. Bible says. "Many patients do well for a long time without the need of additional therapy," he says. However, about 5 percent of these patients experience rapidly progressing life-threatening disease that is insensitive to radioiodine and other treatment approaches. "Until only recently, we have not had any effective therapies for such patients."

Pazopanib is an experimental agent that is also being studied in advanced kidney, ovarian and other cancers. The drug, administered in pill form, targets proteins involved in angiogenesis, the growth of new blood vessels that has a critical role in the growth and spread of tumors. The proteins that pazopanib targets include vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), c-kit and Ret.

Mayo investigators are also leading clinical trials to test pazopanib in two other thyroid cancer subtypes -medullary, which does not respond to radioiodine, and anaplastic, the most aggressive subtype.

Dr. Bible says plans are also under way to test pazopanib in a larger, controlled and randomized clinical trial of patients with advanced differentiated thyroid cancer. Researchers want to more accurately assess benefits and risks.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

VIDEO ALERT: Additional audio and video resources, including excerpts from an interview with Dr. Keith Bible describing the research, are available on the Mayo Clinic News Blog.

Karl Oestreich | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>