Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug shows early promise in treating seizures

18.11.2013
A study out today in the journal Nature Medicine suggests a potential new treatment for the seizures that often plague children with genetic metabolic disorders and individuals undergoing liver failure. The discovery hinges on a new understanding of the complex molecular chain reaction that occurs when the brain is exposed to too much ammonia.

The study shows that elevated levels of ammonia in the blood overwhelm the brain’s defenses, ultimately causing nerve cells to become overexcited. The researchers have also discovered that bumetanide – a diuretic drug used to treat high blood pressure – can restore normal electrical activity in the brains of mice with the condition and prevent seizures.

"Ammonia is a ubiquitous waste product of regular protein metabolism, but it can accumulate in toxic levels in individuals with metabolic disorders," said Maiken Nedergaard, M.D., D.M.Sc., co-director of the University of Rochester Medical Center (URMC) Center for Translational Neuromedicine and lead author of the article. "It appears that the key to preventing the debilitating neurological effects of ammonia toxicity is to correct a molecular malfunction which causes nerve cells in the brain to become chemically unbalanced."

In healthy people, ammonia is processed in the liver, converted to urea, and expelled from the body in urine. Because it is a gas, ammonia can slip through the blood-brain-barrier and make its way into brain tissue. Under normal circumstances, the brain’s housekeeping cells – called astrocytes – sweep up this unwanted ammonia and convert it into a compound called glutamine which can be more easily expelled from the brain.

However, individuals with certain genetic metabolic disorders and people with impaired liver function because of chronic hepatitis, alcoholism, acetaminophen overdose, and other toxic liver conditions cannot remove ammonia from their bodies quickly enough. The result is a larger than normal concentration of ammonia in the blood, a condition called hyperammonemia.

When too much ammonia makes its way into the central nervous system, it can lead to tremors, seizures and, in extreme cases, can cause comas and even lead to death. In children with metabolic disorders the frequent seizures can lead to long-term neurological impairment.

While ammonia has long been assumed to be the culprit behind the neurological problems associated with inherited metabolic disorders and liver failure, the precise mechanisms by which it triggers seizures and comas have not been fully understood. The new study reveals that ammonia causes a chain of events that alters the chemistry and electrical activity of the brain’s nerve cells, causing them to fire in uncontrolled bursts.

One of the keys to unraveling the effects of ammonia on the brain has been new imagining technologies such as two-photon microscopy which allow researchers to watch this phenomenon in real time in the living brains of mice. As suspected, they observed that when high levels of ammonia enter the brain, astrocytes become quickly overwhelmed and cannot remove it fast enough.

The abundant ammonia in the brain mimics the function of potassium, an important player in neurotransmission, and tricks neurons into becoming depolarized. This makes it more likely that electrical activity in the brain will exceed the threshold necessary to trigger seizures.

Furthermore, the researchers observed that one of the neuron’s key molecular gatekeepers – a transporter known as NKCC1 – was also fooled into thinking that the ammonia was potassium. As a result, it went into overdrive, loading neurons with too much chloride. This in turn prevents the cells from stabilizing itself after spikes in activity, keeping the cells in a heightened level of electrical "excitability."

The team found that the drug bumetanide, a known NKCC1 inhibitor, blocked this process and prevented the cells from overloading with chloride. By knocking down this "secondary" cellular effect of ammonia, the researchers were able to control the seizures in the mice and prolong their survival.

"The neurologic impact of hyperammonemia is a tremendous clinical problem without an effective medical solution," said Nedergaard. "The fact that bumetanide is already approved for use gives us a tremendous head start in terms of developing a potential treatment for this condition. This study provides a framework to further explore the therapeutic potential of this and other NKCC1 inhibitors."

Additional co-authors include Fushun Wang, Maria Cotrina, Michel Chen, and Ning Kang with URMC, Vinita Rangroo Thrane, Alexander Thrane and Erlend Nagelhus with the University of Oslo in Norway, and Nathan Smith with the University of Utah. The study was supported with funding from the National Institutes of Health, the Research Council of Norway, the Nordic Center of Excellence Program, the Letten Foundation, and the Fulbright Foundation.

Mark Michaud | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>