Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug shown to reverse radioiodine resistance in some advanced thyroid cancers

14.02.2013
Memorial Sloan-Kettering will lead phase III trial of investigational drug

The experimental drug selumetinib may allow some patients with advanced thyroid cancer to overcome resistance to radioiodine (RAI), the most effective therapy for the disease, according to new research from Memorial Sloan-Kettering Cancer Center.

Published in the February 14 issue of the New England Journal of Medicine, the study offers new hope for patients with a disease that can have a poor prognosis. An estimated 56,000 new cases of thyroid cancer are diagnosed each year in the United States, and that number is on the rise, according to the National Cancer Institute. About 5 percent of these patients will eventually develop distant metastatic disease, and the ten-year survival rate for patients with metastatic tumors that fail to respond to RAI is approximately 10 percent.

According to James A. Fagin, MD, Memorial Sloan-Kettering's Endocrinology Service Chief and senior author on the study, many trials have tested strategies for overcoming RAI resistance in metastatic thyroid cancers, but none have been successful. Previous studies have shown that a cell's ability to absorb RAI is controlled by the MAPK pathway, so Dr. Fagin and his colleagues examined whether selumetinib, an MAPK inhibitor, could reverse RAI resistance by inhibiting the signaling of genetic mutations in this pathway. The approach proved effective, especially in patients with thyroid cancers that contain a mutation in the RAS gene – a component of the MAPK pathway.

"Blocking this key pathway increased the uptake of iodine, making radioiodine treatment potentially effective once again," said Fagin, who led this research in cells and in mice.

Following a five-day low-iodine diet, researchers administered selumetinib to 20 patients with tumors resistant to radioiodine. After four weeks, patients underwent a diagnostic scan that measured how much RAI their tumors would absorb. In eight patients, including all five with an NRAS gene mutation, selumetinib increased iodine uptake enough to allow patients to undergo RAI therapy.

Following RAI, five patients had confirmed partial responses and three had stable disease. In seven of the eight patients, outcomes remained unchanged during six months of follow-up. All eight patients had a decreased level of serum thyroglobulin – a protein in the blood used to screen for advanced thyroid cancer – and none experienced serious side effects from selumetinib.

"An advantage of this therapeutic strategy is that only a short course of drug therapy is required to elicit a significant clinical effect," Fagin said, adding that "the initial results show promise for RAS-mutant disease, but the hope is that a larger trial will shed light on whether selumetinib can be effective for a broader range of advanced thyroid cancer subtypes."

Memorial Sloan-Kettering will lead the international, multicenter phase III clinical trial of selumetinib later this year. The trial, which will be sponsored by AstraZeneca, will enroll patients who have recently had their thyroid gland removed – a procedure known as total thyroidectomy – due to thyroid cancer that has spread to nearby tissue or lymph nodes.

The current research was supported by grants from the American Thyroid Association, The Society of Memorial Sloan-Kettering Cancer Center, the National Institutes of Health (under award numbers CA50706 and CA72598), AstraZeneca, and Genzyme.

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to www.mskcc.org.

Caitlin Hool | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>