Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-resistant bacteria lurk in subway stations, high school students discover

06.02.2015

Swabbing in 5 stations turns up bugs that can thwart 2 common antibiotics

Forget the five-million plus commuters and untold number of rats - many of the living things crowded into the New York City subway system are too small to see. An interest in the more menacing among these microbes led high school student Anya Dunaif, a participant in Rockefeller's Summer Science Research Program, to spend her vacation swabbing benches and turn styles beneath the city. Among her findings: bacteria impervious to two major antibiotics.


As part of Pathomap, a project sampling environmental DNA in New York City, students in Rockefeller University's Science Outreach Program swabbed surfaces in the city's subway system.

Credit: Rockefeller University's Science Outreach Program

The samples she collected and cultured in five stations are a component of a city-scale environmental DNA sampling effort led by Chris Mason, an assistant professor at Weill Cornell Medical College with support from Rockefeller's Science Outreach program, as well as from numerous local, national and international collaborators. This project, called Pathomap, seeks to profile the city's microbial community, or microbiome, while also capturing DNA from other organisms, all of which could potentially be used to assess biological threats, including those to human health. The project's initial results are described in a paper published Wednesday (February 4) in Cell Systems.

With help from fellow high school student researcher Nell Kirchberger, Dunaif collected the bacteria on swabs and tested to see if they would grow in Petri dishes containing three commonly used antibiotics. Bacteria from five of the 18 swabs she tested grew in spite of the presence of either ampicillin or kanamycin, and in one case, both. None of the cultured bacteria appeared resistant to the third antibiotic, chloramphenicol.

... more about:
»DNA »antibiotic »antibiotics »bacteria »resistance

Antibiotic resistance - the ability of disease-causing bacteria to withstand compounds used to kill them off - can make a once treatable infection more serious, even life threatening. A natural consequence of evolution, and the widespread use and misuse of antibiotics, resistance is increasing worldwide.

"Although I knew resistance is considered a serious threat to modern medicine, I went into this project not certain what to expect. I wasn't even sure we would see antibiotic-resistant bacteria, let alone multi-drug resistant bacteria," says Dunaif, a senior at St. Ann's School in Brooklyn. "Now we hope to build off the work I did over the summer by searching for more types of antibiotic resistance in more stations."

Joining her on the continuing search for drug-resistant bugs are Anya Auerbach, a senior at the Ethical Culture Fieldston School, and Will Lounsbery-Scaife, now a freshman at New York University. (Kirchberger has since returned to California.) Both took on their own projects over the summer, although their work was not included in the current Pathomap publication.

Now the three of them, with guidance from Jeanne Garbarino, director of Rockefeller's Science Outreach Program, are preparing a rigorous sampling protocol they plan to test at the Lexington Avenue/59th Street station, and getting ready to look for resistance against four additional antibiotics. As part of this contribution to Pathomap's ongoing work, they intend to use genetic sequencing and analysis provided by Weill Cornell Medical College to identify the resistance genes and the molecular pathways the microbes that contain them use to evade the drugs.

"There's no question, high school students can do legitimate primary research. If we are going to encourage critical thinking, which is important regardless of what you do in life, I think it is important to have them ask and attempt to answer open-ended questions," Garbarino says.

Lounsbery-Scaife spent his summer swabbing water fountains in Central Park. The sequencing results aren't complete yet, but the experience, he says, has given him a better understanding of the scientific process, not just the results.

"It has de-romanticized the whole process for me, but not in a bad way. I learned how slow and consistent you have to be throughout, writing everything down and doing everything exactly the same way. This might deter some people from wanting to do science, but for me, it just validates my interest in it," Lounsbery-Scaife says.

Auerbach, meanwhile, attempted to track microbes as they accumulated over time on Grand Central Station ticket machines. Her effort, which she says attracted a surprising lack of interest from subway riders, was unsuccessful because she couldn't get enough DNA. Nevertheless, she sees value in the disappointment.

"I was hoping to get something really cool and exciting and instead it was like, nope, we can't even sequence this. I did a lot of troubleshooting, and I am confident that if there was something there we would have gotten it," Auerbach says.

Auerbach's results are actually quite typical of research done even by professional scientists, Garbarino says. "Someone said to me when I was in grad school for every 99 failures there is one success. It's not about a grand slam every time you are up to bat, it's about strategy and working with your team to get someone to home plate. As our students learned, that may be slow and tedious at times, but it is gratifying nonetheless."

In addition to antibiotic-resistance, Pathomap's surveys also turned up fragments of DNA that correspond to well-known disease causing microbes, including plague and anthrax bacteria. However, the authors note, microbes that left behind this DNA do not appear to be causing widespread disease; instead they may simply represent normal inhabitants of urban infrastructure.

Wynne Parry | EurekAlert!

Further reports about: DNA antibiotic antibiotics bacteria resistance

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>