Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug improves walking performance for Duchenne muscular dystrophy patients

08.08.2013
Results from a clinical trial of eteplirsen, a drug designed to treat Duchenne muscular dystrophy, suggest that the therapy allows participants to walk farther than people treated with placebo and dramatically increases production of a protein vital to muscle growth and health.

The study, led by a team in The Research Institute at Nationwide Children's Hospital, is the first of its kind to show these results from an exon-skipping drug—a class of therapeutics that allows cells to skip over missing parts of the gene and produce protein naturally.

"I've been doing this for more than 40 years and this is one of the most exciting developments we've seen," says Jerry Mendell, MD, lead author of the study and director of the Center for Gene Therapy at Nationwide Children's. "It offers great hope to patients with Duchenne muscular dystrophy and their families."

The research, which appears online Aug. 1 in the journal Annals of Neurology, is the first study from a double-blind controlled randomized trial of an exon-skipping agent to provide conclusive proof based on the standard six-minute walk test used to measure muscle function in patients with Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy in children.

About one in every 5,000 male births in the U.S. has the disorder, which usually leaves patients unable to walk on their own by age 12. Children with DMD have a mutation that cripples the body's ability to produce a protein called dystrophin, which helps absorb the shock or energy that's created when a muscle contracts. Without it, that released energy injures muscle fibers. Over time, the muscle degenerates, scar tissue builds up and fat slowly replaces the dead muscle.

The exact mutation varies from patient to patient but in 65 percent of cases, the dystrophin gene is missing large sections of DNA called exons, which carry the instructions for protein production. Accompanying this type of mutation is a spontaneously occurring reaction that enables muscle cells to skip over the deleted sections and produce smaller—but functional—versions of protein.

Eteplirsen, manufactured by Sarepta Therapeutics in Cambridge, Mass., mimics this naturally occurring phenomenon, allowing cells to skip over exon 51 in the dystrophin gene. About 13 percent of patients with the disorder have this mutation. Nationwide Children's began the phase II trial of eteplirsen in August 2011, enrolling 12 boys age 7 to 12 years.

Participants received the drug via weekly IVs, with one group getting a 30 mg/kg dose and another group receiving 50 mg/kg. A control group received a placebo. Participants completed a six-minute walk test at the outset and again at weeks 12, 24 and 48. Muscle biopsies were also taken when the study began and again at those intervals to measure for dystrophin-positive muscle fibers.

Although there was no dystrophin production at 12 weeks, participants showed a 23 percent increase in dystrophin-positive muscle fibers by the 24-week mark. The striking improvement and lack of side effects prompted researchers to switch participants in the placebo group to the drug. By week 48, participants had a 52 percent increase in dystrophin-positive muscle fibers and were able to walk 67.3 meters farther than the placebo group on the six-minute walk test.

Although the results are promising, Dr. Mendell is quick to note that the small study leaves many questions unanswered. For example, researchers would like to know how the drug affects dystrophin production in muscles throughout the limbs and whether some muscles may get a bigger boost than others.

"We know that if you have an area that is not expressing dystrophin, the membrane will be fragile and vulnerable to activity-related degeneration," says Dr. Mendell, who also is director of the Neuromuscular Disorders program at Nationwide Children's and a professor of pediatrics in The Ohio State University College of Medicine. "There may be factors that lead to preferential localization of the dystrophin production. That's one of many issues we'd like to investigate further."

That information would help researchers determine what dose and frequency of administration would have the best benefit.

"Another big issue is whether patients who start to produce dystrophin will plateau quickly or if the drug would continue to show benefits over the long term," Dr. Mendell says.

Sarepta Therapeutics, which funded the study, plans to submit a New Drug Application to the Food and Drug Administration early next year. If approved, eteplirsen would be the first therapy for DMD to target the underlying cause of the disease.

Gina Bericchia | EurekAlert!
Further information:
http://www.NationwideChildrens.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>