Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug combination therapy developed to treat leukemia

18.04.2013
A new, pre-clinical study by researchers at Virginia Commonwealth University Massey Cancer Center suggests that a novel drug combination could lead to profound leukemia cell death by disrupting the function of two major pro-survival proteins. The effectiveness of the therapy lies in its ability to target a pro-survival cell signaling pathway known as PI3K/AKT/mTOR, upon which the leukemia cells have become dependent.

In the study, published in the journal Cancer Research, researchers combined the drug ABT-737 with another agent BEZ235. ABT-737 targets proteins known as B-cell lymphoma 2 (Bcl-2) and Bcl-xL, which prevent apoptosis, a form of cell suicide, in cancer cells. BEZ235 directly inhibits the PI3K/AKT/mTOR pathway, and as a result, reduces the expression of another anti-apoptotic protein known as Mcl-1, which is not targeted by ABT-737. Among their many functions, signaling pathways regulate biological processes required for cellular survival. The PI3K/AKT/mTOR pathway helps keep apoptosis in check, in part, by controlling the production of Mcl-1.

However, the pathway can become dysregulated in cancer, and in so doing, contribute to uncontrolled tumor growth and resistance to conventional cancer therapies. It is activated in 50 to 80 percent of patients with acute myelogenous leukemia (AML), and in some, but not all cases, is associated with genetic mutations. Significantly, disabling both anti-apoptotic proteins, Bcl-2 and Bcl-xL, in conjunction with Mcl-1, caused profound cell death of leukemia cells in the test tube as well as in animal models of AML.

"This study builds on many years of work in our laboratory investigating the mechanisms that regulate apoptosis in human leukemia cells. To the best of our knowledge, it is the first to raise the possibility that activation of the P13K/AKT/mTOR pathway, rather than genetic mutations within the pathway, may represent the best predictor of leukemia cell responses to these targeted agents," says one of the study's key researchers Steven Grant, M.D., Shirley Carter Olsson and Sture Gordon Olsson Chair in Oncology Research, associate director for translational research, program co-leader of Developmental Therapeutics and Cancer Cell Signaling research member at VCU Massey Cancer Center. "These findings could lead to a new therapeutic strategy for patients with AML and potentially other diseases by targeting patients whose leukemia cells display activation of a specific survival pathway."

Grant's team made another discovery that helped explain the new therapy's effectiveness. They found that the therapy releases and/or activates the pro-apoptotic proteins Bim, Bak and Bax, which help trigger apoptosis. Thus, in addition to disabling major pro-survival proteins, the combination therapy also helps to unleash several additional proteins that promote apoptosis.

Moving forward, Grant and his team hope to work with pharmaceutical companies and the National Cancer Institute to develop strategies combining inhibitors of the PI3K/AKT/mTOR pathway with Bcl-2 family antagonists for the treatment of patients with AML.

Grant collaborated on this research with lead author Mohamed Rahmani, Ph.D., associate professor of internal medicine at the VCU School of Medicine, who spearheaded this research. Other collaborators included David C. Williams M.D., Ph.D., co-director of the Tissue and Data Acquisition and Analysis Core at VCU Massey Cancer Center, researcher in the Developmental Therapeutics program at Massey and assistant professor in the VCU Department of Pathology; and Andrea Ferreira-Gonzalez, Ph.D., professor in the VCU Department of Pathology.

This research was supported by National Institutes of Health grants CA93738, CA100866-01, CA130805, CA142509, and CA148431; awards from the Leukemia and Lymphoma Society of America and the Multiple Myeloma Research Foundation; and, in part, by funding from VCU Massey Cancer Center's NIH-NCI Cancer Center Support Grant P30 CA016059.

The full manuscript of this study can be found online at: http://cancerres.aacrjournals.org/content/73/4/1340.long.

News directors: Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact Alaina Farrish, (804) 628-4578.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 67 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at http://www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see http://www.vcu.edu.

Alaina Farrish | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>