Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug combination therapy developed to treat leukemia

18.04.2013
A new, pre-clinical study by researchers at Virginia Commonwealth University Massey Cancer Center suggests that a novel drug combination could lead to profound leukemia cell death by disrupting the function of two major pro-survival proteins. The effectiveness of the therapy lies in its ability to target a pro-survival cell signaling pathway known as PI3K/AKT/mTOR, upon which the leukemia cells have become dependent.

In the study, published in the journal Cancer Research, researchers combined the drug ABT-737 with another agent BEZ235. ABT-737 targets proteins known as B-cell lymphoma 2 (Bcl-2) and Bcl-xL, which prevent apoptosis, a form of cell suicide, in cancer cells. BEZ235 directly inhibits the PI3K/AKT/mTOR pathway, and as a result, reduces the expression of another anti-apoptotic protein known as Mcl-1, which is not targeted by ABT-737. Among their many functions, signaling pathways regulate biological processes required for cellular survival. The PI3K/AKT/mTOR pathway helps keep apoptosis in check, in part, by controlling the production of Mcl-1.

However, the pathway can become dysregulated in cancer, and in so doing, contribute to uncontrolled tumor growth and resistance to conventional cancer therapies. It is activated in 50 to 80 percent of patients with acute myelogenous leukemia (AML), and in some, but not all cases, is associated with genetic mutations. Significantly, disabling both anti-apoptotic proteins, Bcl-2 and Bcl-xL, in conjunction with Mcl-1, caused profound cell death of leukemia cells in the test tube as well as in animal models of AML.

"This study builds on many years of work in our laboratory investigating the mechanisms that regulate apoptosis in human leukemia cells. To the best of our knowledge, it is the first to raise the possibility that activation of the P13K/AKT/mTOR pathway, rather than genetic mutations within the pathway, may represent the best predictor of leukemia cell responses to these targeted agents," says one of the study's key researchers Steven Grant, M.D., Shirley Carter Olsson and Sture Gordon Olsson Chair in Oncology Research, associate director for translational research, program co-leader of Developmental Therapeutics and Cancer Cell Signaling research member at VCU Massey Cancer Center. "These findings could lead to a new therapeutic strategy for patients with AML and potentially other diseases by targeting patients whose leukemia cells display activation of a specific survival pathway."

Grant's team made another discovery that helped explain the new therapy's effectiveness. They found that the therapy releases and/or activates the pro-apoptotic proteins Bim, Bak and Bax, which help trigger apoptosis. Thus, in addition to disabling major pro-survival proteins, the combination therapy also helps to unleash several additional proteins that promote apoptosis.

Moving forward, Grant and his team hope to work with pharmaceutical companies and the National Cancer Institute to develop strategies combining inhibitors of the PI3K/AKT/mTOR pathway with Bcl-2 family antagonists for the treatment of patients with AML.

Grant collaborated on this research with lead author Mohamed Rahmani, Ph.D., associate professor of internal medicine at the VCU School of Medicine, who spearheaded this research. Other collaborators included David C. Williams M.D., Ph.D., co-director of the Tissue and Data Acquisition and Analysis Core at VCU Massey Cancer Center, researcher in the Developmental Therapeutics program at Massey and assistant professor in the VCU Department of Pathology; and Andrea Ferreira-Gonzalez, Ph.D., professor in the VCU Department of Pathology.

This research was supported by National Institutes of Health grants CA93738, CA100866-01, CA130805, CA142509, and CA148431; awards from the Leukemia and Lymphoma Society of America and the Multiple Myeloma Research Foundation; and, in part, by funding from VCU Massey Cancer Center's NIH-NCI Cancer Center Support Grant P30 CA016059.

The full manuscript of this study can be found online at: http://cancerres.aacrjournals.org/content/73/4/1340.long.

News directors: Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact Alaina Farrish, (804) 628-4578.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 67 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at http://www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see http://www.vcu.edu.

Alaina Farrish | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Consensus in the Fight Against Colorectal Cancer
31.05.2016 | Universität Bern

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>