Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-Drug Combination May Slow Deadly Thyroid Cancer

09.01.2013
A combination of the drugs pazopanib and paclitaxel shows promise in slowing anaplastic thyroid cancer (ATC), according to a Mayo Clinic-led study published in the journal Science Translational Medicine.

The two drugs together resulted in greater anti-cancer activity in ATC than either drug alone, says lead researcher Keith Bible, M.D., Ph.D., a Mayo Clinic oncologist.

Anaplastic thyroid cancer is a rare but devastating form of thyroid cancer that typically strikes men and women in their 60s and 70s. It is very aggressive, with a median survival of only about 5 months from time of diagnosis. Only 20 percent of patients survive a year beyond diagnosis, and it has historically been found to be resistant to most therapies.

Pazopanib, a kinase-inhibitor that interferes with the growth of cancer cells, is already approved by the Food and Drug Administration (FDA) to treat renal cancer tumors. Paclitaxel is an FDA-approved chemotherapy drug that disrupts the machinery involved in cell division.

Researchers studied anaplastic thyroid cancer cells and tumors in cell culture and in animal models. Human ATC cells were readily killed, and ATC tumors implanted into mice were 50 percent smaller when treated with the combination in comparison to the response to treatment with either drug alone. Pilot therapy of one patient with metastatic anaplastic thyroid cancer using the combination also resulted in marked tumor shrinkage lasting over six months. "This was a highly unexpected finding for this type of aggressive tumor, which often can double in size in a matter of days," Dr. Bible says.

In previous studies, pazopanib alone was found not effective in the treatment of anaplastic thyroid cancer. Paclitaxel was added to address the aggressiveness of anaplastic thyroid cancer tumors and bolster anti-cancer effects. The team investigated how the two drugs might complement each other.

Monitoring cancer cells multiply in time-lapse video under a microscope, researchers noted that the drug combination resulted in abnormal cell division and an increase in ATC cell death. Although pazopanib had not been known to specifically affect cell division, researchers speculated that the drug might have another unrecognized molecular target within cancer cells.

"We ended up learning that pazopanib also happens to inhibit a protein involved in cell division known as aurora A; this property seems to be involved in producing enhanced effects when pazopanib is combined with paclitaxel," Dr. Bible says. "This finding suggests that the combination may also be useful in treating other cancers, such as breast cancer, in which aurora A is sometimes found to be present in elevated amounts, as it is in ATC," Dr. Bible says.

The results also prompted an ongoing randomized multicenter clinical trial, led by Mayo Clinic and Memorial Sloan-Kettering Cancer Center and administered through the Radiation Therapy Oncology Group, testing the two-drug combination when added to radiation therapy in the initial treatment of patients with anaplastic thyroid cancer.

"This important next step is designed to determine whether the combination of drugs will improve ATC patient survival compared to paclitaxel alone," Dr. Bible says.

The research was funded by National Institutes of Health grants CA125750 and CA13666 and the State of Florida Department of Health Bankhead-Coley Cancer Program. Co-authors include Crescent Isham, Ayoko Bossou, Vivian Negron, Wilma Lingle, Ph.D., Vera Suman, Ph.D. of Mayo Clinic in Rochester, Robert Smallridge, M.D., John Copland, Ph.D., and Laura Marlow of Mayo Clinic in Jacksonville, Fla.; Kelly Fisher and Rakesh Kumar, Ph.D., of GlaxoSmithKline; and Eric Sherman, M.D., of Memorial Sloan-Kettering Cancer Center.

About Mayo Clinic Cancer Center

As a leading institution funded by the National Cancer Institute, Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy. For information on cancer clinical trials, call 507-538-7623.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Joe Dangor | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht UV light robot to clean hospital rooms could help stop spread of 'superbugs'
15.04.2015 | Texas A&M University

nachricht Heart cells regenerated in mice
14.04.2015 | Weizmann Institute of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>