Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-Drug Combination May Slow Deadly Thyroid Cancer

09.01.2013
A combination of the drugs pazopanib and paclitaxel shows promise in slowing anaplastic thyroid cancer (ATC), according to a Mayo Clinic-led study published in the journal Science Translational Medicine.

The two drugs together resulted in greater anti-cancer activity in ATC than either drug alone, says lead researcher Keith Bible, M.D., Ph.D., a Mayo Clinic oncologist.

Anaplastic thyroid cancer is a rare but devastating form of thyroid cancer that typically strikes men and women in their 60s and 70s. It is very aggressive, with a median survival of only about 5 months from time of diagnosis. Only 20 percent of patients survive a year beyond diagnosis, and it has historically been found to be resistant to most therapies.

Pazopanib, a kinase-inhibitor that interferes with the growth of cancer cells, is already approved by the Food and Drug Administration (FDA) to treat renal cancer tumors. Paclitaxel is an FDA-approved chemotherapy drug that disrupts the machinery involved in cell division.

Researchers studied anaplastic thyroid cancer cells and tumors in cell culture and in animal models. Human ATC cells were readily killed, and ATC tumors implanted into mice were 50 percent smaller when treated with the combination in comparison to the response to treatment with either drug alone. Pilot therapy of one patient with metastatic anaplastic thyroid cancer using the combination also resulted in marked tumor shrinkage lasting over six months. "This was a highly unexpected finding for this type of aggressive tumor, which often can double in size in a matter of days," Dr. Bible says.

In previous studies, pazopanib alone was found not effective in the treatment of anaplastic thyroid cancer. Paclitaxel was added to address the aggressiveness of anaplastic thyroid cancer tumors and bolster anti-cancer effects. The team investigated how the two drugs might complement each other.

Monitoring cancer cells multiply in time-lapse video under a microscope, researchers noted that the drug combination resulted in abnormal cell division and an increase in ATC cell death. Although pazopanib had not been known to specifically affect cell division, researchers speculated that the drug might have another unrecognized molecular target within cancer cells.

"We ended up learning that pazopanib also happens to inhibit a protein involved in cell division known as aurora A; this property seems to be involved in producing enhanced effects when pazopanib is combined with paclitaxel," Dr. Bible says. "This finding suggests that the combination may also be useful in treating other cancers, such as breast cancer, in which aurora A is sometimes found to be present in elevated amounts, as it is in ATC," Dr. Bible says.

The results also prompted an ongoing randomized multicenter clinical trial, led by Mayo Clinic and Memorial Sloan-Kettering Cancer Center and administered through the Radiation Therapy Oncology Group, testing the two-drug combination when added to radiation therapy in the initial treatment of patients with anaplastic thyroid cancer.

"This important next step is designed to determine whether the combination of drugs will improve ATC patient survival compared to paclitaxel alone," Dr. Bible says.

The research was funded by National Institutes of Health grants CA125750 and CA13666 and the State of Florida Department of Health Bankhead-Coley Cancer Program. Co-authors include Crescent Isham, Ayoko Bossou, Vivian Negron, Wilma Lingle, Ph.D., Vera Suman, Ph.D. of Mayo Clinic in Rochester, Robert Smallridge, M.D., John Copland, Ph.D., and Laura Marlow of Mayo Clinic in Jacksonville, Fla.; Kelly Fisher and Rakesh Kumar, Ph.D., of GlaxoSmithKline; and Eric Sherman, M.D., of Memorial Sloan-Kettering Cancer Center.

About Mayo Clinic Cancer Center

As a leading institution funded by the National Cancer Institute, Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy. For information on cancer clinical trials, call 507-538-7623.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Joe Dangor | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>