Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel drug combination offers therapeutic promise for hard-to-treat cancers

13.09.2011
Researchers at Brigham and Women’s Hospital (BWH) have identified a new combination of targeted therapies that, together, may treat two aggressive tumor types that until now have not had effective treatments. These findings are published in Cancer Cell on September 13, 2011.

While numerous anti-cancer drugs are being developed, many tumors do not respond to currently available single therapies. As such, there is a major push to identify new drug combinations that can work together to treat these resistant cancers.

The drug combination identified by BWH researchers was shown to successfully treat two models of aggressive cancers: a nervous system tumor associated with neurofibromatosis type 1, and KRAS-mutant lung cancer, a form of lung cancer that accounts for about 25 percent of all lung cancers.

“Without a targeted treatment that works, these two cancers are currently being treated with chemotherapy with variable success,” said Dr. Karen Cichowski, Associate Professor in Genetics at BWH and lead author of the paper. “By identifying a more effective targeted treatment, the outcome and survival rate for these cancers may see a drastic improvement, and patients may avoid the typical side-effects of chemotherapy.”

Researchers took the approach of combining two targeted agents, one the mTOR inhibitor rapamycin, which suppressed tumor growth, along with the HSP90 inhibitor IPI-504 from Infinity Pharmaceuticals, which triggers a specific kind of stress in cancer cells. Together, but not alone, these drugs promoted dramatic tumor regression in these two distinct cancers in mice.

“It’s like hitting the tumor cell from two different angles,” explains Dr. Cichowski. “Using one drug to put on the brakes and another to apply stress to an already stressed cancer cell, which ultimately triggers its self-destruction.”

These studies have inspired the testing of a drug combination that is now in a Phase I clinical trial, specifically in KRAS-mutant lung cancer.

“The identification of this promising therapeutic combination sets the stage for developing other combinations and may also prove effective in other cancers through further research,” said Dr. Cichowski.

The research was funded by the National Cancer Institute and the Ludwig Center at Dana-Farber/Harvard Cancer Center.

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.brighamandwomens.org/

Further reports about: BWH Cancer KRAS-mutant anti-cancer drug cancer drug drug combination lung cancer

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>