Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel drug candidates offer new route to controlling inflammation

15.05.2012
Pursuing a relatively untapped route for regulating the immune system, an international team of researchers has designed and conducted initial tests on molecules that have the potential to treat diseases involving inflammation, such as asthma, rheumatoid arthritis, stroke and sepsis.

The team started by creating a three-dimensional map of a protein structure called the C3a receptor, which sits on the surface of human cells and plays a critical role in regulating a branch of the immune system called the complement system.

They then used computational techniques to design short portions of protein molecules, known as peptides, that they predicted would interact with the receptor and either block or enhance aspects of its activity. Finally, experimentalists validated the theoretical predictions by synthesizing the peptides and testing them in animal and human cells.

The researchers – a collaboration of teams at four institutions on three continents – published their results May 10 in the Journal of Medicinal Chemistry.

The collaboration includes Christodoulos Floudas, the Stephen C. Macaleer '63 Professor of Engineering and Applied Science in the Department of Chemical and Biological Engineering at Princeton University; Dimitrios Morikis, professor of bioengineering at the University of California, Riverside; Peter Monk of the Department of Infection and Immunity at the University of Sheffield Medical School, U.K.; and Trent Woodruff of the School of Biomedical Sciences at the University of Queensland, Australia.

The regulation of the complement system – so called because it complements the body's central system of immune cells and antibodies – is thought to be a possible route to controlling over-active or mistaken immune responses that cause damage. However, few drugs directly target complement proteins, and none targets the C3a receptor, in part because of the complexity of the complement system. In some cases complement activity can help downplay immune responses while in other cases it can stoke even stronger reactions.

The collaborators were able to create peptides that blocked activity of C3a (antagonists) and others that stimulated it (agonists) with unprecedented potency and precision. Their success stems from a novel optimization-based approach, developed in the Floudas lab, for computing how a protein's three-dimensional structure will change when changes are made in the protein's chemical sequence. This ability to design peptides of a desired shape, allowed them to target the C3a receptor in precise ways.

Morikis and his graduate students Chris Kieslich and Li Zhang provided the collaborators the 3D structure of the naturally occurring peptide that normally regulates the C3a receptor in human cells. Using a portion of that structure as a flexible template, Floudas and graduate students Meghan Bellows-Peterson and Ho Ki Fung designed new peptides that were predicted either to enhance or block C3a. Monk and postdoctoral fellow Kathryn Wareham tested the predictions in rat cells, while Woodruff and student Owen Hawksworth tested them in human cells.

Among the conditions potentially treatable through complement regulation is reperfusion injury, which occurs when blood flow is temporarily cut off to some part of the body, as in a heart attack or stroke, and then an inflammatory response develops when the blood returns. Another possible use would be in organ transplantation, in which the body often mounts a destructive immune response against the newly introduced organ. Other common conditions affected by the complement system are rheumatoid arthritis and sepsis.

As next steps, the team will seek to test their peptides in live animal models of inflammation. They also plan to explore more generally the dual role of C3a in inflammation, with an eye toward developing further drug candidates.

The work was funded in part by the National Science Foundation, National Institutes of Health, University of California Tobacco-Related Disease Research Program, Beckman Initiative for Macular Research, US Environmental Protection Agency, British Heart Foundation, and the US Department of Defense. Further details are available here: http://titan.princeton.edu/news/ournews/?name=DesignPeptideInflam

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>