Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dragnet for epilepsy genes

23.01.2015

An international team of scientists together with the University of Bonn Hospital have taken a new path in the research into causes of epilepsy: The researchers determined the networks of the active genes and, like a dragnet, looked for the "main perpetrators" using a computer model.

In doing so, they discovered the molecule sestrin-3 as a central switch. In animal models, the scientists were able to demonstrate that inhibition of sestrin-3 leads to a reduction in seizures. The results are now being presented in the renowned journal "Nature Communications".


Surgical specimen of an antiepileptic-resistant patient with temporal lobe epilepsy, which represents a unique access to the human brain tissue (upper left).

(c) Photo: Arbeitsgruppe Albert Becker/UKB

During an epileptic seizure, many nerve cells lose their regular rhythm and switch into a rapid rhythm. This results in seizures to the point of a loss of consciousness. The temporal lobes in the brain are most frequently the region in which such synchronous discharges occur.

"Drugs have the desired effect in only about two-thirds of patients with temporal lobe epilepsy," says Prof. Dr. med. Albert Becker from the Institute of Neuropathology of the University of Bonn Hospital. If no drug therapy helps, the seizure focus with the out-of-rhythm nerve cells are surgically removed as last therapy option. The epileptologists and neurosurgeons from the University of Bonn Hospital are specialized on such procedures to help the patient.

The brain tissue removed during these procedures gives science the unique opportunity to learn more about the causes and new treatment options for temporal lobe epilepsy. "Without tissue samples of this type, we would not have been able to conduct our large-scale investigation on the networks of genes and signal chains at all," says Prof. Becker. Together with their colleagues from Great Britain, the USA, Australia, Finland and Belgium, the scientists examined surgically removed tissue samples from the temporal lobes of a total of 129 epilepsy patients.

Sestrin-3 aberrantly activates brain and immune cells in epilepsy

The researchers from the University of Bonn Hospital determined which genes were active in the diseased nerve cells and other supporting brain cells. The scientists working with lead author Dr. Enrico Petretto from Imperial College London (England) entered these "suspects" into a computer model. As in the case of a dragnet, this allows connections between the conning tower and the signal chains thus set in motion to be sought. Just as the culprit is ultimately caught in the police's net due to certain manhunt connections, the scientists very similarly encountered an important switch during their analyses: Sestrin-3.

It is known that the molecule has an activating function in brain cells, among others, and also in immune cells. "Our data show: Sestrin-3 is centrally involved in the development and progression of temporal lobe epilepsy," explains Dr. Katharina Pernhorst, bioinformatician with Prof. Becker. The scientists proved this in mice and zebra fish whose brains demonstrate changes as in the case of human epilepsy. If "sestrin-3" is silenced, the severity and frequency of epileptic seizures is also reduced.

Starting point for novel therapies

The scientists see a platform in their novel method for further investigations. "This method broadens the view of individual gene/effect relationships to a systematic examination of the entire network," says Prof. Becker. In this way, the key positions in the interaction of signal chains and genes as well as with the immune system can be better detected. Moreover, the results show promising starting points for novel therapies. Conventional epilepsy drugs intervene in a regulatory way in the ion channels of the diseased nerve cells.

"However these drugs do not work in many patients because they develop resistance," reports Prof. Becker. "Sestrin-3" is not involved in the signal conduction via ion channels but rather, given the impact of stress, it upregulates the excitability of the nerve cells and also the activation of the immune cells. The errant regulation of the "sestrin-3" which leads to the development of epilepsy can presumably be held in check through suitable inhibitors without leading to drug resistance in the patient. "However, there is still a significant need for research until a suitable drug may be found," says Prof. Becker.

Publication: Systems-Genetics identifies Sestrin 3 as a proconvulsant gene network regulator in human epileptic Hippocampus, “Nature Communications”, DOI: 10.1038/ncomms7031

Media contact information:

Prof. Dr. med. Albert Becker
Institute of Neuropathology
University of Bonn Hospital
Tel. ++49-(0)228-28711352
E-Mail: Albert_Becker@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>