Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Donor livers preserved and improved with room-temperature perfusion system

07.05.2014

Machine perfusion system may allow use of organs currently unsuitable for transplantation

A system developed by investigators at the Massachusetts General Hospital (MGH) Center for Engineering in Medicine (CEM) and the MGH Transplant Center has the potential to increase both the supply and the quality of donor organs for liver transplantation.

In their report, which has been published online in the American Journal of Transplantation, the research team describes how use of a machine perfusion system delivering a supply of nutrients and oxygen though an organ's circulation at room temperature preserved and improved the metabolic function of donor livers in a laboratory study. The system has not yet been tested clinically.

"By the time a donated organ is transplanted, it has sustained significant injury through lack of a blood supply," says Bote Bruinsma, MSc, of the MGH-CEM and Department of Surgery, lead author of the report. "By supporting metabolic function, we can give the liver time to recover, preconditioning it before transplantation. The hope is that, in the near future, livers that currently are considered unsuitable for transplantation will be recovered by more advanced preservation techniques, significantly increasing the number of organs available for transplantation."

... more about:
»MGH »damage »death »liver »metabolic »organs »temperature

The continuing shortage of donor organs has already led to the limited use of organs from donors who do not meet the strict criteria for brain death but in whom death from cardiovascular failure is imminent and organs can be procured soon after death. The quality of organs from such donors is often less than that of organs procured after brain death because of the greater time elapsed between when circulation ceases and when the surgically removed organ is cooled for transportation. The authors note that increased use of such "marginal" organs requires improved methods of preservation beyond simple cold storage, which only slows the process of deterioration.

Several studies have shown that perfusing donor livers with a cold solution can reduce tissue damage, and small clinical trials found evidence that cold-perfusing livers prior to transplantation improved the donor organs' function. But while cold perfusion delays the restoration of the organ's metabolic activity until it is implanted, use of a warm perfusion solution could initiate several aspects of organ recovery before implantation, potentially allowing better assessment of the organ's viability than is currently possible.

Studies of systems perfusing donor livers at body temperature have supported this possibility, but the author notes that rapidly warming and reoxygenating a cold-stored organ – either by perfusion at body temperature or by direct implantation into a recipient – causes further damage to an organ already compromised by the interrupted blood supply. This damage is an even greater concern when marginal organs are used.

The system evaluated in the current study perfuses the organ with a room-temperature (around 70˚ F) solution. Through the New England Organ Bank the investigators acquired seven donor livers – only two donated after brain death – that had been judged unsuitable for transplant for a number of reasons. The organs were connected to the perfusion system via the hepatic artery and portal vein and perfused with a room-temperature solution containing oxygen, vitamins and other nutrients, and antioxidants for three hours following several hours of cold storage.

Analysis of the fluid coming out of the livers during perfusion revealed that the organs were metabolically active – producing bile, albumin and urea – and markers of tissue damage were limited. Levels of the cellular energy molecule ATP in liver tissue actually increased during perfusion, implying that the process could help recover, not just preserve, the organ's function, potentially allowing the safe use of organs currently being discarded.

Bruinsma adds that measuring these and other metabolic signals during perfusion could significantly improve the ability to assess the quality of a donated liver, which is currently done based on limited parameters. "Demonstrating the feasibility of this approach in human livers is an enormous step forward in bringing this technology to clinical application," he explains. "We expect that perfusion systems will revolutionize the way the liver is preserved outside the body, significantly increasing the number of livers available for transplants and saving the lives of potentially thousands of patients." Bruinsma is an MD/PhD candidate at the University of Amsterdam and visiting graduate student in the MGH Department of Surgery

Korkut Uygun, PhD, of the MGH Center for Engineering in Medicine, a co-corresponding author of the report, adds, "We like how simple and straightforward this protocol is. It doesn't involve all the bells and whistles of temperature control or use of blood or similar oxygen carriers, and yet the liver clearly still continues to work and heal itself in this environment, which makes us very optimistic about rapid clinical translation and adoption." Uygun is an assistant professor of Surgery at Harvard Medical School.

###

Maria Louisa Izamis, PhD, MGH Center for Engineering in Medicine, is also a co-corresponding author of the American Journal of Transplantation paper. Additional co-authors are Sinan Õzer, Adam Farmer, Wilson Wu, Nima Saeidi, PhD, Tim Berendsen, MD, and Martin Yarmush, MD, PhD, MGH-CEM; Heidi Yeh, MD, and James Markmann, MD, PhD, MGH Transplant Center; Rex N. Smith, MD, PhD, MGH Pathology; Paulo Martins, MD, PhD, UMass Memorial Medical Center; and Sanna Op den Dries and Robert Porte, MD, PhD. University of Groningen, the Netherlands. The study was supported by National Institutes of Health grants R00DK080942, R01DK096075 and R01EB008678 and funds from Shriners Hospitals for Children. Patents on the technology described in this report are pending.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!
Further information:
http://www.massgeneral.org/

Further reports about: MGH damage death liver metabolic organs temperature

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>