Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Donor livers preserved and improved with room-temperature perfusion system

07.05.2014

Machine perfusion system may allow use of organs currently unsuitable for transplantation

A system developed by investigators at the Massachusetts General Hospital (MGH) Center for Engineering in Medicine (CEM) and the MGH Transplant Center has the potential to increase both the supply and the quality of donor organs for liver transplantation.

In their report, which has been published online in the American Journal of Transplantation, the research team describes how use of a machine perfusion system delivering a supply of nutrients and oxygen though an organ's circulation at room temperature preserved and improved the metabolic function of donor livers in a laboratory study. The system has not yet been tested clinically.

"By the time a donated organ is transplanted, it has sustained significant injury through lack of a blood supply," says Bote Bruinsma, MSc, of the MGH-CEM and Department of Surgery, lead author of the report. "By supporting metabolic function, we can give the liver time to recover, preconditioning it before transplantation. The hope is that, in the near future, livers that currently are considered unsuitable for transplantation will be recovered by more advanced preservation techniques, significantly increasing the number of organs available for transplantation."

... more about:
»MGH »damage »death »liver »metabolic »organs »temperature

The continuing shortage of donor organs has already led to the limited use of organs from donors who do not meet the strict criteria for brain death but in whom death from cardiovascular failure is imminent and organs can be procured soon after death. The quality of organs from such donors is often less than that of organs procured after brain death because of the greater time elapsed between when circulation ceases and when the surgically removed organ is cooled for transportation. The authors note that increased use of such "marginal" organs requires improved methods of preservation beyond simple cold storage, which only slows the process of deterioration.

Several studies have shown that perfusing donor livers with a cold solution can reduce tissue damage, and small clinical trials found evidence that cold-perfusing livers prior to transplantation improved the donor organs' function. But while cold perfusion delays the restoration of the organ's metabolic activity until it is implanted, use of a warm perfusion solution could initiate several aspects of organ recovery before implantation, potentially allowing better assessment of the organ's viability than is currently possible.

Studies of systems perfusing donor livers at body temperature have supported this possibility, but the author notes that rapidly warming and reoxygenating a cold-stored organ – either by perfusion at body temperature or by direct implantation into a recipient – causes further damage to an organ already compromised by the interrupted blood supply. This damage is an even greater concern when marginal organs are used.

The system evaluated in the current study perfuses the organ with a room-temperature (around 70˚ F) solution. Through the New England Organ Bank the investigators acquired seven donor livers – only two donated after brain death – that had been judged unsuitable for transplant for a number of reasons. The organs were connected to the perfusion system via the hepatic artery and portal vein and perfused with a room-temperature solution containing oxygen, vitamins and other nutrients, and antioxidants for three hours following several hours of cold storage.

Analysis of the fluid coming out of the livers during perfusion revealed that the organs were metabolically active – producing bile, albumin and urea – and markers of tissue damage were limited. Levels of the cellular energy molecule ATP in liver tissue actually increased during perfusion, implying that the process could help recover, not just preserve, the organ's function, potentially allowing the safe use of organs currently being discarded.

Bruinsma adds that measuring these and other metabolic signals during perfusion could significantly improve the ability to assess the quality of a donated liver, which is currently done based on limited parameters. "Demonstrating the feasibility of this approach in human livers is an enormous step forward in bringing this technology to clinical application," he explains. "We expect that perfusion systems will revolutionize the way the liver is preserved outside the body, significantly increasing the number of livers available for transplants and saving the lives of potentially thousands of patients." Bruinsma is an MD/PhD candidate at the University of Amsterdam and visiting graduate student in the MGH Department of Surgery

Korkut Uygun, PhD, of the MGH Center for Engineering in Medicine, a co-corresponding author of the report, adds, "We like how simple and straightforward this protocol is. It doesn't involve all the bells and whistles of temperature control or use of blood or similar oxygen carriers, and yet the liver clearly still continues to work and heal itself in this environment, which makes us very optimistic about rapid clinical translation and adoption." Uygun is an assistant professor of Surgery at Harvard Medical School.

###

Maria Louisa Izamis, PhD, MGH Center for Engineering in Medicine, is also a co-corresponding author of the American Journal of Transplantation paper. Additional co-authors are Sinan Õzer, Adam Farmer, Wilson Wu, Nima Saeidi, PhD, Tim Berendsen, MD, and Martin Yarmush, MD, PhD, MGH-CEM; Heidi Yeh, MD, and James Markmann, MD, PhD, MGH Transplant Center; Rex N. Smith, MD, PhD, MGH Pathology; Paulo Martins, MD, PhD, UMass Memorial Medical Center; and Sanna Op den Dries and Robert Porte, MD, PhD. University of Groningen, the Netherlands. The study was supported by National Institutes of Health grants R00DK080942, R01DK096075 and R01EB008678 and funds from Shriners Hospitals for Children. Patents on the technology described in this report are pending.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!
Further information:
http://www.massgeneral.org/

Further reports about: MGH damage death liver metabolic organs temperature

More articles from Health and Medicine:

nachricht Penn study identifies viral product that promotes immune defense against RSV
04.09.2015 | University of Pennsylvania

nachricht Columbia Engineering team develops targeted drug delivery to lung
03.09.2015 | Columbia University School of Engineering and Applied Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>