Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don't assume the sand is safe

12.04.2012
Scientists from the University of Miami and Northern Illinois University develop guidelines to assess risk of illness from sand at recreational sites
On warm days, the beach seems an ideal destination for family rest and relaxation. Who hasn't built a sand castle or been buried up to the neck in sand? However, that family fun has a dark side -- sand can harbor illness-causing microbes. Unfortunately, there are no guidelines for sand quality at recreational sites.

Now, environmental scientists at the University of Miami (UM) and at Northern Illinois University have created a reference guide for potentially harmful germs in sand, similar to the guidelines set by the US Environmental Protection Agency for marine water. The report is published in the American Chemical Society journal Environmental Science & Technology.

"These values can be used by beach managers to make decisions concerning sand quality," says Helena Solo-Gabriele, professor in the Department of Civil, Architectural and Environmental Engineering at the UM College of Engineering and principal investigator of this project. "That way, when regulators are faced with a decision about a potential health risk, there is a guideline available with which to decide whether or not the levels of microbes found in the sand are cause for concern."

Dogs, birds and cats visiting a beach are common sources of bacteria in the sand. "Exposures to high levels of certain microorganisms could cause gastrointestinal illness in humans, while infectious risks vary in different microorganism," says Tomoyuki Shibata, assistant professor in the Public Health Program and Institute for the Study of the Environment, Sustainability, & Energy, at Northern Illinois University and first author of the study.

The researchers wanted to determine what levels of bacteria, or pathogens, found in beach sand could pose a health risk for beachgoers, explains Solo-Gabriele, who is also Co-PI of the Oceans and Human Health Center at the UM Rosenstiel School of Marine and Atmospheric Science (RSMAS).

"The environments in the sand and water are very different," said Solo-Gabriele. "The sand provides more protection against the effects of solar radiation, which has a tendency to inactivate microbes in water. Sand may also protect microbes from predators (other microbes) that are found exclusively in water."

To develop the guidelines, the scientists ran one million simulations of the number of microbes in each gram of sand, the transfer of sand from hand to mouth and the ingestion rate. The researchers determined the risk of having 19 cases per 1,000 beachgoers--the level used by the EPA for swimming in marine recreational waters.

The team also documented the levels of pathogens found in the sand at Hobie Cat Beach, in Miami. The findings indicate that levels of harmful microbes at the beach site were low, when compared to the reference levels and therefore safe for beachgoers.

However, studies have shown that children have a higher illness risk than adults from beach and sand exposures. For that reason, the researchers will now focus on studies of kids' play behavior in sand, to better estimate the acceptable levels of microbes that can cause diseases in children.

"Parents of young children don't need to overreact to our findings and they can reduce their child's infectious risk by basic hygiene practices such as hand washing before eating or drinking and taking a shower," said Shibata.
The report is titled "Quantitative Microbial Risk Assessment of Human Illness from Exposure to Marine Beach Sand." The study was funded by the National Science Foundation through the Oceans and Human Health Center, at UM RSMAS.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | EurekAlert!
Further information:
http://www.umiami.edu
http://www.miami.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>