Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA method can provide more effective treatment of childhood cancer

15.10.2012
After leukaemia and brain tumours, neuroblastoma is the most common form of cancer to affect children.
A thesis from the Sahlgrenska Academy, University of Gothenburg, Sweden, has studied a DNA method which is now used for all cases of neuroblastoma in Sweden, and which has led to more effective treatment at individual level.

Neuroblastoma affects around 20 children each year, most of them under the age of two. This form of cancer, which affects the peripheral nervous system, is particularly unusual: some tumours can regress spontaneously without treatment, while others are highly aggressive and have a poor prognosis despite intensive treatment.

Researchers at the Sahlgrenska Academy, University of Gothenburg have shown that DNA analyses can be used to differentiate the subgroups of this type of cancer, which it is hoped could lead to a more personalized treatment.

“The ultimate scenario would be first to analyze the tumour, and then to introduce medicine that targets the specific properties of that particular tumour,” explains Hanna Kryh, who presents the results in her thesis. “In this way, the treatment could be personalized so that patients with a more aggressive form would receive an intensive treatment, while patients with a less aggressive form could be spared unnecessary side-effects. Our studies are a real first step towards such a form of personalized treatment strategy.”

The method is already used for all new cases of neuroblastoma in Sweden, in order to make a sounder diagnosis and to place the patient in the appropriate treatment group.

“We have also identified a previously unknown subgroup of neuroblastoma, with a DNA profile that helps us to investigate which genes are important in terms of tumour development, and may be suitable targets for future treatment.”
The researchers hope that the DNA method will be used as a starting point for the development of patient-specific tests that can detect tumour cells in blood or bone marrow samples.

“This would allow us to monitor how well the patient is responding to the treatment, and to detect remaining tumour cells, that could result in a relapse, at an early stage.”

The thesis “Molecular characterization of neuroblastoma tumours – A basis for personalized medicine” was defended in June.

Link to thesis: http://hdl.handle.net/2077/28956

Contact:
Hanna Kryh, the Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg
+46 31 343 41 57
hanna.kryh@gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

Further reports about: Academy DNA Gothenburg Sahlgrenska tumour cells

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>