Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA of 50 breast cancer patients decoded

04.04.2011
Reveals complexity and hints toward personalized medicine

In the single largest cancer genomics investigation reported to date, scientists have sequenced the whole genomes of tumors from 50 breast cancer patients and compared them to the matched DNA of the same patients' healthy cells. This comparison allowed researchers to find mutations that only occurred in the cancer cells.

They uncovered incredible complexity in the cancer genomes, but also got a glimpse of new routes toward personalized medicine. The work was presented at the American Association for Cancer Research 102nd Annual Meeting 2011.

In all, the tumors had more than 1,700 mutations, most of which were unique to the individual, says Matthew J. Ellis, MD, PhD, professor of medicine at Washington University School of Medicine in St. Louis and a lead investigator on the project.

"Cancer genomes are extraordinarily complicated," Ellis says. "This explains our difficulty in predicting outcomes and finding new treatments."

To undertake the massive task, Washington University oncologists and pathologists at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine collaborated with the university's Genome Institute to sequence more than 10 trillion chemical bases of DNA — repeating the sequencing of each patient's tumor and healthy DNA about 30 times to ensure accurate data.

"The computing facilities required to analyze this amount of data are similar in scale to those of the Large Hadron Collider, used to understand the workings of sub-atomic particles," Ellis says.

The DNA samples came from patients enrolled in a clinical trial that Ellis is leading for the American College of Surgeons Oncology Group. All patients in the trial had what is called estrogen-receptor-positive breast cancer. These cancer cells have receptors that bind to the hormone estrogen and help the tumors grow.

To slow tumor growth and make the tumors easier to remove, patients received estrogen-lowering drugs before surgery. But, for unknown reasons, this treatment does not always work. Twenty-four of the 50 tumor samples came from patients whose tumors were resistant to this treatment, and 26 came from patients whose tumors responded. Comparing the two groups might help explain why some estrogen-receptor-positive breast cancer patients do well with estrogen-lowering drugs and others poorly.

Confirming previous work, Ellis and colleagues found that two mutations were relatively common in many of the patients' cancers. One called PIK3CA is present in about 40 percent of breast cancers that express receptors for estrogen. Another called TP53 is present in about 20 percent.

Adding to this short list of common mutations, Ellis and colleagues found a third, MAP3K1, that controls programmed cell death and is disabled in about 10 percent of estrogen-receptor-positive breast cancers. The mutated gene allows cells that should die to continue living. Only two other genes, ATR and MYST3, harbored mutations that recurred at a similar frequency as MAP3K1 and were statistically significant.

"To get through this experiment and find only three additional gene mutations at the 10 percent recurrence level was a bit of a shock," Ellis says.

In addition, they found 21 genes that were also significantly mutated, but at much lower rates — never appearing in more than two or three patients. Despite the relative rarity of these mutations, Ellis stresses their importance.

"Breast cancer is so common that mutations that recur at a 5 percent frequency level still involve many thousands of women," he says.

Ellis points out that some mutations that are rare in breast cancer may be common in other cancers and already have drugs designed to treat them.

"You may find the rare breast cancer patient whose tumor has a mutation that's more commonly found in leukemia, for example. So you might give that breast cancer patient a leukemia drug," Ellis says.

But such treatment is only possible when the cancer's genetics are known in advance. Ideally, Ellis says, the goal is to design treatments by sequencing the tumor genome when the cancer is first diagnosed.

"We get good therapeutic ideas from the genomic information," he says. "The near-term goal is to use information on whole genome sequencing to guide a personalized approach to the patient's treatment."

This work builds on previous collaborations between Washington University oncologists and the Genome Institute. In a study published last year in Nature, they reported the complete tumor and normal DNA sequences of a woman with "triple-negative" breast cancer, a particularly aggressive type that is difficult to treat and more common in younger women and African-Americans.

While many mutations are rare or even unique to one patient, Ellis says quite a few can be classified on the basis of common biological effects and therefore could be considered together for a particular therapeutic approach.

Ellis looks to future work to help make sense of breast cancer's complexity. But these highly detailed genome maps are an important first step.

"At least we're reaching the limits of the complexity of the problem," he says. "It's not like looking into a telescope and wondering how far the universe goes. Ultimately, the universe of breast cancer is restricted by the size of the human genome."

Ellis et al. Breast cancer genome. Presented Saturday, April 2, 2011, at the 102nd Annual Meeting of the American Association for Cancer Research in Orlando, Fla.

Ding L, Ellis MJ, Weinstock GM, Aft R, Watson M, Ley TJ, Wilson RK, Mardis ER et al. Cancer remodeling in a basal-like breast cancer metastasis and xenograft. Nature. April 15, 2010.

This work was supported by grants from the National Human Genome Research Institute, the Breast Cancer Research Foundation, the National Cancer Institute, Susan G. Komen for the Cure and Washington University School of Medicine.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Alvin J. Siteman Cancer Center is the only NCI-designated Comprehensive Cancer Center within a 240-mile radius of St. Louis. Siteman Cancer Center is composed of the combined cancer research and treatment programs of Barnes-Jewish Hospital and Washington University School of Medicine.

One of only three NIH-funded large-scale genome centers in the United States, The Genome Institute at Washington University is a leader in genomics research as it applies to the study of biology, human disease and the field of personalized medicine. Founded in 1993, The Genome Institute focuses on cancer genomics, the genomics of heritable diseases, microbial and pathogen genomics, as well as novel sequencing and evolutionary genomics.

The American College of Surgeons Oncology Group is an NCI-funded cooperative group and is dedicated to conducting prospective therapeutic trials for breast, thoracic, and gastrointestinal cancers. As a surgeon-based multi-disciplinary cooperative group, ACOSOG is committed to translational research and tissue acquisition to advance our understanding of mechanisms of cancer response and resistance to systemic therapies.

Julia Evangelou Strait | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>