Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinct niches in bone marrow nurture blood stem cells

25.02.2013
In research that could one day improve the success of stem cell transplants and chemotherapy, scientists have found that distinct niches exist in bone marrow to nurture different types of blood stem cells.

Stem cells in the blood are the precursors to infection-fighting white blood cells and oxygen-carrying red blood cells.


Distinct niches exist in bone marrow to nurture different types of blood stem cells, new research shows. In mice bone marrow, blood stem cells, highlighted in blue, are nurtured by support cells shown in red and yellow.

Credit: Daniel Link, M.D.

The research, by a team at Washington University School of Medicine in St. Louis, is reported Feb. 24 in the advance online edition of Nature.

The new findings, in mice, suggest that it may be possible to therapeutically target support cells in a particular niche. On the one hand, a drug that nourishes support cells could encourage blood stem cells to establish themselves in the bone marrow, enabling patients who have had stem cell transplants to more quickly rebuild their immune systems.

On the other, tumor cells are known to hide in the bone marrow, and a drug that disrupts the niche environment may drive cancer cells into the bloodstream, where they are more vulnerable to the damaging effects of chemotherapy.

"Our results offer hope for targeting these niches to treat specific cancers or to improve the success of stem cell transplants," says senior author Daniel Link, MD, the Alan A. and Edith L. Wolff Professor of Medicine. "Already, we and others are leading clinical trials to evaluate whether it is possible to disrupt these niches in patients with leukemia or multiple myeloma."

Working in the mice, the researchers selectively deleted a critical gene, CXCL12, which is known to be important for keeping blood stem cells healthy. Rather than knock out the gene in all of the support cells in a niche, the researchers deleted the gene in specific types of support cells. This led to the discovery that each niche holds only certain blood stem cells that are nourished by a unique set of support cells.

"What we found was rather surprising," Link says. "There's not just one niche for developing blood cells in the bone marrow. There's a distinct niche for stem cells, which have the ability to become any blood cell in the body, and a separate niche for infection-fighting blood cells that are destined to become T cells and B cells."

The findings provide a strong foundation for investigating whether disrupting these niches can improve the effectiveness of chemotherapy.

In a phase II pilot study led by Washington University medical oncologist Geoffrey Uy, MD, assistant professor of medicine, Link is evaluating whether the drug G-CSF can alter the stem cell niche in patients with acute lymphoblastic leukemia whose cancer has recurred or is resistant to treatment. The drug was approved by the Food and Drug Administration more than 20 years ago to stimulate production of white blood cells in patients undergoing chemotherapy, who often have weakened immune systems and are prone to infections.

But Uy and colleagues will evaluate the drug when it is given before chemotherapy. Patients enrolled in the trial at the Siteman Cancer Center will receive G-CSF for five days before chemotherapy, and the investigators will determine whether it can disrupt the protective environment of the bone marrow niche and make cancer cells more sensitive to chemotherapy.

While it's too early to know whether the treatment approach will be successful, Link's new research in mice is bolstered by a companion paper in the same issue of Nature. In that research, Sean Morrison, PhD, director of the Children's Medical Center Research Institute at the University of Texas Southwestern Medical Center in Dallas, used similar molecular methods to also discover distinct niches in the bone marrow for blood stem cells.

"There's a lot of interest right now in trying to understand these niches," Link adds. "Both of these studies add new information that will be important as we move forward. Next, we hope to understand how stem cell niches can be manipulated to help patients undergoing stem cell transplants."

The research is supported by the National Institutes of Health (grants RO1 HL60772 and F30 HL097423)

Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC. CXCL12 production by early mesenchymal progenitors is required for haemoatopoietic stem-cell maintenance. Nature. Advance online publication Feb. 24, 2013.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

nachricht Scientists create imaging 'toolkit' to help identify new brain tumor drug targets
02.02.2016 | eLife

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>