Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dissolvable fabric loaded with medicine might offer faster protection against HIV


Soon, protection from HIV infection could be as simple as inserting a medicated, disappearing fabric minutes before having sex.

University of Washington bioengineers have discovered a potentially faster way to deliver a topical drug that protects women from contracting HIV. Their method spins the drug into silk-like fibers that quickly dissolve when in contact with moisture, releasing higher doses of the drug than possible with other topical materials such as gels or creams.

The UW’s dissolving fibers could be spun and placed within an applicator, similar to those used to insert a tampon. The inset image shows the quick-release fibers magnified 5,000 times.

“This could offer women a potentially more effective, discreet way to protect themselves from HIV infection by inserting the drug-loaded materials into the vagina before sex,” said Cameron Ball, a UW doctoral student in bioengineering and lead author on a paper in the August issue of Antimicrobial Agents and Chemotherapy.

The UW team, led by bioengineering assistant professor Kim Woodrow, previously found that electrically spun cloth could be dissolved to release drugs. These new results build upon that research, showing that the fiber materials can hold 10 times the concentration of medicine as anti-HIV gels currently under development.

Oral pills are used in the U.S. for people who are considered at risk for HIV infection, and topical medications in the form of gels and films are just starting to be developed. These products would be placed inside the vagina before sexual intercourse, allowing the drug to dissolve and diffuse into the surrounding tissue. Called microbicides, the drugs must be given as a large dose to be effective minutes before sex.

But these topical drugs haven’t done well in clinical trials, partly because they aren’t always easy for women to use. Drugs in film form take at least 15 minutes to fully dissolve in the body, and the volume of gels must be large enough to deliver a full dose but small enough to prevent leakage. These factors can make microbicides difficult for a woman to use before sex, researchers said.

“The effectiveness of an anti-HIV topical drug depends partially on high-enough dosages and quick release,” Ball said. “We have achieved higher drug loading in our material such that you wouldn’t need to insert a large amount of these fibers to deliver enough of the drug to be helpful.”

The UW team created the soft fibers using a process called electrospinning. They first dissolved a polymer and combined it with a drug, maraviroc, and other agents often used in pharmaceuticals that help a material become more water soluble and dissolve quicker. Maraviroc currently is used to treat symptoms of HIV for people who already have the virus.

The syrupy substance is then charged with a high-voltage generator and passed through a syringe. The electric charge on the substance’s surface causes it to form a long string from the syringe, where it whips around – or spins – before collecting on an electrically grounded surface. A palm-sized swatch of the fabric takes about five minutes to make.

Anti-HIV drugs such as maraviroc can take a while to dissolve, so the researchers looked at different ingredients for the fiber that would allow for the highest concentration of drug with the fastest-possible release in the body. Because the electrically spun fibers have a large surface area, researchers were able to create samples in which nearly 30 percent of the mass was composed of the drug itself. In topical gels, the drug makes up only about 3 percent of the total mass.

By adjusting the ingredients in the fibers, researchers were able to dissolve the drug in about six minutes, no matter how much drug mass was in the fiber.

The research team says the soft, dissolving fibers could be rolled into a cardboard tampon applicator for insertion or built into the shape of a vaginal ring, similar to those used for contraception. The material can accommodate different anti-HIV drugs and the team is testing several others for effectiveness.

“We think the fiber platform technology has the capability of being developed into multifunctional medical fabrics that address simultaneously challenges related to biological efficacy and user preferences,” Woodrow said.

Researchers are currently focused on developing prototypes based on user guidance that can be tested for safety and efficacy in animal models.

This research was funded by the National Institutes of Health.


For more information, contact Ball at and Woodrow at

Grant numbers: NIH AI098648, NIH P41 EB-002027.

Michelle Ma | Eurek Alert!
Further information:

Further reports about: HIV NIH anti-HIV deliver dissolve drugs effectiveness efficacy fabric fiber fibers mass materials

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>