Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissolvable fabric loaded with medicine might offer faster protection against HIV

31.07.2014

Soon, protection from HIV infection could be as simple as inserting a medicated, disappearing fabric minutes before having sex.

University of Washington bioengineers have discovered a potentially faster way to deliver a topical drug that protects women from contracting HIV. Their method spins the drug into silk-like fibers that quickly dissolve when in contact with moisture, releasing higher doses of the drug than possible with other topical materials such as gels or creams.


The UW’s dissolving fibers could be spun and placed within an applicator, similar to those used to insert a tampon. The inset image shows the quick-release fibers magnified 5,000 times.

“This could offer women a potentially more effective, discreet way to protect themselves from HIV infection by inserting the drug-loaded materials into the vagina before sex,” said Cameron Ball, a UW doctoral student in bioengineering and lead author on a paper in the August issue of Antimicrobial Agents and Chemotherapy.

The UW team, led by bioengineering assistant professor Kim Woodrow, previously found that electrically spun cloth could be dissolved to release drugs. These new results build upon that research, showing that the fiber materials can hold 10 times the concentration of medicine as anti-HIV gels currently under development.

Oral pills are used in the U.S. for people who are considered at risk for HIV infection, and topical medications in the form of gels and films are just starting to be developed. These products would be placed inside the vagina before sexual intercourse, allowing the drug to dissolve and diffuse into the surrounding tissue. Called microbicides, the drugs must be given as a large dose to be effective minutes before sex.

But these topical drugs haven’t done well in clinical trials, partly because they aren’t always easy for women to use. Drugs in film form take at least 15 minutes to fully dissolve in the body, and the volume of gels must be large enough to deliver a full dose but small enough to prevent leakage. These factors can make microbicides difficult for a woman to use before sex, researchers said.

“The effectiveness of an anti-HIV topical drug depends partially on high-enough dosages and quick release,” Ball said. “We have achieved higher drug loading in our material such that you wouldn’t need to insert a large amount of these fibers to deliver enough of the drug to be helpful.”

The UW team created the soft fibers using a process called electrospinning. They first dissolved a polymer and combined it with a drug, maraviroc, and other agents often used in pharmaceuticals that help a material become more water soluble and dissolve quicker. Maraviroc currently is used to treat symptoms of HIV for people who already have the virus.

The syrupy substance is then charged with a high-voltage generator and passed through a syringe. The electric charge on the substance’s surface causes it to form a long string from the syringe, where it whips around – or spins – before collecting on an electrically grounded surface. A palm-sized swatch of the fabric takes about five minutes to make.

Anti-HIV drugs such as maraviroc can take a while to dissolve, so the researchers looked at different ingredients for the fiber that would allow for the highest concentration of drug with the fastest-possible release in the body. Because the electrically spun fibers have a large surface area, researchers were able to create samples in which nearly 30 percent of the mass was composed of the drug itself. In topical gels, the drug makes up only about 3 percent of the total mass.

By adjusting the ingredients in the fibers, researchers were able to dissolve the drug in about six minutes, no matter how much drug mass was in the fiber.

The research team says the soft, dissolving fibers could be rolled into a cardboard tampon applicator for insertion or built into the shape of a vaginal ring, similar to those used for contraception. The material can accommodate different anti-HIV drugs and the team is testing several others for effectiveness.

“We think the fiber platform technology has the capability of being developed into multifunctional medical fabrics that address simultaneously challenges related to biological efficacy and user preferences,” Woodrow said.

Researchers are currently focused on developing prototypes based on user guidance that can be tested for safety and efficacy in animal models.

This research was funded by the National Institutes of Health.

###

For more information, contact Ball at cameron.s.ball@gmail.com and Woodrow at woodrow@uw.edu.

Grant numbers: NIH AI098648, NIH P41 EB-002027.

Michelle Ma | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/07/30/dissolvable-fabric-loaded-with-medicine-might-offer-faster-protection-against-hiv/

Further reports about: HIV NIH anti-HIV deliver dissolve drugs effectiveness efficacy fabric fiber fibers mass materials

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>