Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupting Sleep Causes Problems for the Body and Brain

28.10.2009
Anyone who has pulled an all-nighter or flown across an ocean knows you can’t mess up your sleep schedule without unpleasant consequences.

New research in mice now shows that throwing off natural circadian rhythms over the long term can seriously disturb the body and brain, causing weight gain and impulsive behavior. It seems even to make mice dumber, or at least slower at solving new mazes.

Rockefeller University postdoctoral fellow Ilia Karatsoreos, who led the research, says the implications for humans are significant. “In our modern, industrialized society, the disruption of our individual circadian rhythms has become commonplace, from shift-work and jet lag to the constant presence of electric lighting.

These disruptions are not only a nuisance, but can also lead to serious health and safety problems.” Karatsoreos, who works in Bruce S. McEwen’s Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, presented his findings October 19 in Chicago as part of a panel at Neuroscience 2009, the Society for Neuroscience’s annual meeting.

To test the neurological impact of disrupting circadian rhythms, Karatsoreos and colleagues adjusted the hours in which mice were exposed to light, from their natural 24-hour cycle to 20 hours, with 10 hours of light and 10 hours of dark. After six to eight weeks of these shortened days, these mice began acting differently than their peers in a control group. They also showed several physiological differences.

While not any more active than the control mice, the disrupted mice were impulsive, a behavior measured in part by how long they wait to emerge into the light from a dark compartment in a cage. They were slower to figure out changes made to a water maze they had mastered, suggesting reduced mental flexibility. Physically, their body temperature cycles were disorganized when compared to their peers and the levels of hormones related to metabolism, such as leptin, which regulates appetite, and insulin, were elevated. Consequently the mice gained weight even though they were fed the same diet as the controls.

The researchers also found that the brains of the disrupted mice had shrunken and less complex neurons in the medial prefrontal cortex, an area important to the so-called executive function, which regulates mental flexibility among other things. “Those changes may help explain some of the behavioral effects of circadian disruptions,” Karatsoreos says.

Brett Norman | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>