Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease diagnosis in just 15 minutes

01.10.2008
Testing for diseases such as cancer and multiple sclerosis could soon be as simple as using a pregnancy testing kit.

A team led by scientists at the University of Leeds has developed a biosensor technology that uses antibodies to detect biomarkers - molecules in the human body which are often a marker for disease – much faster than current testing methods.

The technology could be used in doctors’ surgeries for more accurate referral to consultants, and in hospitals for rapid diagnosis. Tests have shown that the biosensors can detect a wide range of analytes (substances being measured), including biomarkers present in prostate and ovarian cancer, stroke, multiple sclerosis, heart disease and fungal infections. The team also believes that the biosensors are versatile enough to test for diseases such as tuberculosis and HIV.

The technology was developed through a European collaboration of researchers and commercial partners in a 2.7 million Euro project called ELISHA. It features new techniques for attaching antibodies to innovative surfaces, and novel electronic measurement methods that need no reagents or labels.

ELISHA was co-ordinated by Dr Paul Millner from the Faculty of Biological Sciences at the University of Leeds, and managed by colleague Dr Tim Gibson. Says Dr Millner: “We believe this to be the next generation diagnostic testing. We can now detect almost any analyte faster, cheaper and more easily than the current accepted testing methodology.“

Currently blood and urine are tested for disease markers using a method called ELISA (Enzyme Linked Immunosorbant Assay). Developed in the 1970s, the process takes an average of two hours to complete, is costly and can only be performed by highly trained staff.

The Leeds team are confident their new technology – which provides results in 15 minutes or less - could be developed into a small device the size of a mobile phone into which different sensor chips could be inserted, depending on the disease being tested for.

“We’ve designed simple instrumentation to make the biosensors easy to use and understand,” says Dr Millner. “They’ll work in a format similar to the glucose biosensor testing kits that diabetics currently use.”

Professor Séamus Higson, Dean of the Faculty of Medicine and Biosciences, Cranfield Health, and one of the partners within the ELISHA programme, says: “The speed of response this technology offers will be of great benefit to early diagnosis and treatment of many diseases, and will permit testing in de-localised environments such as GP’s surgeries.”

A spinout company – ELISHA Systems Ltd – has been set up by Dr Gibson, commercial partners Uniscan Instruments Ltd and Technology Translators Ltd to bring the technology to market.

Says Dr Gibson: “The analytes used in our research only scratch the surface of the potential applications. We’ve also shown that it can be used in environmental applications, for example to test for herbicides or pesticides in water and antibiotics in milk.”

Clare Elsley | alfa
Further information:
http://www.leeds.ac.uk
http://www.immunosensors.com

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>