Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery by UC Riverside entomologists could shrink dengue-spreading mosquito population

03.12.2010
Alexander Raikhel's lab identifies a microRNA molecule that controls blood feeding and egg development in Aedes aegypti females

Each year, dengue fever infects as many as 100 million people while yellow fever is responsible for about 30,000 deaths worldwide. Both diseases are spread by infected female Aedes aegypti mosquitoes, which require vertebrate blood to produce eggs. The blood feeding and the egg development are tightly linked to how the mosquito transmits the disease-causing virus.

Now a team of entomologists at the University of California, Riverside has identified a microRNA (a short ribonucleic acid molecule) in female Aedes aegypti mosquitoes that when deactivated disrupts the mosquito's blood digestion and egg development – a discovery that could help control the spread of not only dengue and yellow fever but potentially all vector-borne diseases.

MicroRNAs do not code for protein products but play powerful regulatory roles in development and cell growth; their mis-regulation leads to defects, including cancer. The researchers asked if microRNAs were involved in essential functions in female mosquitoes such as blood feeding and egg maturation. These functions are required not only for successful reproduction, but also serve as a foundation for the mosquito's ability to transmit pathogens of devastating human diseases.

In their experiments in the lab, the researchers were screening a number of microRNAs in female Aedes aegypti mosquitoes to study their behavior during blood feeding and reproduction, when they found one microRNA, "miR-275," was highly elevated during egg development.

Next, the researchers developed a method for specific deactivation of miR-275 in Aedes aegypti females and fed these mosquitoes with blood to analyze what effects occur when female mosquitoes no longer have this microRNA at their disposal.

They found that the blood these mosquitoes had fed on remained undigested in their guts. Further, the overall volume of the engorged blood was unusually large, suggesting that the mosquitoes' fluid excretory function had been impeded. The researchers also found that in these mosquitoes, egg development, whose success is dependent on blood digestion, was severely inhibited.

"Our finding is exciting because it gets to the very core of what a vector of diseases is all about," said Alexander Raikhel, a distinguished professor of entomology, whose lab led the study. "We can now knock down a series of events – starting with the digestion of blood and proceeding all the way to egg maturation – simply by eliminating this small molecule, miR-275. In tropical areas of the world, where dengue and yellow fever are often leading causes of hospitalization and death among adults and children, a reduction in the number of Aedes aegypti mosquitoes would be tremendously beneficial."

Study results appear this week in the online edition of the Proceedings of the National Academy of Sciences.

Next in this line of work, Raikhel's lab plans to focus on determining which genes miR-275 targets, what roles these genes play in blood digestion and egg development, and what mechanism underlies the activation and deactivation of miR-275.

Bart Bryant, the first author of the research paper and a postdoctoral researcher in Raikhel's lab, explained that the research team knocked down or "depleted" the miR-275 with an "antagomir" – a small synthetic RNA molecule that in this research study binds with miR-275, preventing it from doing its job of allowing blood digestion and egg development to proceed.

"We think our work has opened the door for exploring how microRNAs regulate critical physiological functions specific to vectors that transmit deadly disease pathogens," Bryant said.

The study was supported by a 10-year grant to Raikhel from the National Institutes of Health. Raikhel, a member of the National Academy of Sciences, and Bryant were joined in the study by Warren MacDonald, a graduate student in Raikhel's lab.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>