Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery reveals important clues to cancer metastasis

Findings offer a new direction in pursuit of potential therapies for bone metastasis

In recent years investigators have discovered that breast tumors are influenced by more than just the cancer cells within them. A variety of noncancerous cells, which in many cases constitute the majority of the tumor mass, form what is known as the "tumor microenvironment." This sea of noncancerous cells and the products they deposit appear to play key roles in tumor pathogenesis.

Among the key accomplices in the tumor microenvironment are mesenchymal stem cells (MSCs), a group of adult progenitor cells which have been shown to help breast cancers maneuver and spread to other parts of the body.

Now, new research sheds further light on how this is happening. Led by investigators at Beth Israel Deaconess Medical Center (BIDMC), the findings demonstrate that the lysyl oxidase (LOX) gene is spurred to production in cancer cells as a result of their contact with MSCs, and once produced, can help ensure the spread of otherwise weakly metastatic cancer cells from primary tumors to the lung and bones. Described on-line in the Proceedings of the National Academy of Sciences (PNAS), this discovery not only provides key insights into the basic biology of tumor formation, but also offers a potential new direction in the pursuit of therapies for the treatment of bone metastasis.

"We don't have a lot of therapies that can target breast cancer once it has metastasized, particularly once cancer cells have lodged in the bone," says senior author Antoine Karnoub, PhD, an investigator in the Department of Pathology at BIDMC and Assistant Professor of Pathology at Harvard Medical School. "When breast cancer cells reach the skeleton, one way in which they cause damage is by breaking down bone tissue, which results in the bone's rich matrix releasing numerous factors. These factors, in turn, feed the cancer cells, setting in motion a vicious cycle that leaves patients susceptible to fractures, pain, and further metastasis."

MSCs are non-hematopoietic progenitor cells predominantly produced in the bone marrow that generate bone, cartilage, fat, and fibrous connective tissue. They additionally support immune cell development and are recruited to inflammatory sites throughout the body to help shut down immune responses and regenerate damaged tissues, as might occur during wound healing. Several years ago, as a postdoctoral researcher at the Whitehead Institute of the Massachusetts Institute of Technology, Karnoub began exploring the idea that MSCs were migrating to tumors after mistaking the cancer sites for inflammatory lesions in need of healing.

"We discovered that once MSCs had reached the tumor sites, they were actually helping in cancer metastasis, causing primary cancer cells to spread to other sites in the body," he explains. In this new paper, Karnoub wanted to find out, in greater molecular detail, how breast cancer cells respond to the influences of MSCs in order to better understand how cancer cells cross-talk with recruited cells in the microenvironment.

His scientific team first embarked on a straightforward experiment. "We took two dishes of cells, cancer cells and MSCs, and mixed them together," explains Karnoub. After three days, they removed the cancer cells and studied them to see how they had changed.

"We found that the lysyl oxidase [LOX] gene was highly upregulated in the cancer cells," he says. "It turns out that when a cancer cell comes in contact with an MSC, it flips on this LOX gene, turning it up by a factor of about 100. So our next question was, 'What happens to the cancer cells when they encounter this boost of LOX that they themselves have produced?'"

The answer, as revealed in subsequent experiments, was that LOX was setting in motion a cell program called epithelial-to-mesenchymal transition (EMT). During EMT, cancer cells that usually clump together undergo a transformation into cells that exhibit decreased adhesion to their neighbors and go their own way. As a result, these cancerous cells are able to migrate, significantly enhancing their ability to metastasize.

"When we put these cells back into mice, they not only formed tumors that metastasized to the lung, but also to the bone," says Karnoub. "This makes you wonder whether the cancer cells in primary tumors have become so acclimated to interacting with bone-derived MSCs that they can now grow more easily in the bone once they leave the tumor."

The investigators also wanted to find out if, by going through the EMT process, cancer cells were also acquiring the phenotypes of another highly aggressive feature of malignant cancer cells, those of cancer stem cells within the cores of most tumors.

"Cancer stem cells are believed to be responsible for the resurgence of tumors following chemotherapy treatment, and an increasing body of science is focused on understanding how CSCs function and how they originate," says Karnoub. "The processes of EMT and CSC formation have been described as being closely coupled and we asked whether LOX might be regulating CSC phenotypes, just as it was regulating EMT. To our surprise, this was not the case. This tells us that pathways that were once thought to be intimately intertwined and commonly tweaked may, in fact, be separate, and now we can start to tease out the respective circuitries with a bit more clarity."

Lastly, the investigators identified the mechanism that was enabling LOX to be turned on from outside the cell, a set of molecules called hyaluronic acid (HA) and CD44. "It turns out that the MSCs provide the HA while the cancer cells provide the CD44 and they work in tandem like a lock and key to upregulate LOX expression," explains Karnoub, adding that antagonists to HA and CD44, already in extensive investigations and clinical exploration, might be of increased use from a clinical standpoint, perhaps in managing bone metastasis.

"This work reveals yet another important component of the complexity of malignant progression," says Robert Weinberg, PhD, Professor of Biology and Director of the MIT Ludwig Center for Molecular Oncology at the Massachusetts Institute of Technology. "The bidirectional communication between breast cancer cells and the nearby MSCs results in the acquisition of malignant traits by cancer cells, including their spread to distant sites in the body where they seed potentially lethal metastases."

Says Karnoub, "Now that the functions of tumor promoters and tumor suppressors are being appreciated with increased clarity, it would aid greatly if we can understand how these major cancer regulators are themselves regulated by what's outside the cancer cell. In concert with designing therapies that can enter inside the cell to directly inhibit such active players, one could perhaps design a therapy that inhibits the interaction of the cancer cell with its microenvironment, thereby shutting off the desired pathways altogether."

Study coauthors include BIDMC investigators Christelle P. El-Haibi (first author), Antoine Campagne, Anthony Y. Collmann, and Eva Csizmadia; George W. Bell of the Whitehead Institute for Biomedical Research; Jiangwen Zhang of the Faculty of Arts and Sciences, Harvard University; David Wood and Sangeeta N. Bhatia of the Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cally M. Scherber, Mehmet Toner and Daniel Irimia of Massachusetts General Hospital; and Odette Mariani and Anne Vincent-Salomon of the Institut Curie, Paris, France.

This work was supported by grants from the National Institutes of Health (R21CA135601) and startup funds from BIDMC and the Sidney Kimmel Cancer Research Foundation. Antoine Karnoub is a 2010 Kimmel Scholar and a recipient of a 2012 Career Catalyst Research Award from Susan G. Komen for the Cure.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and currently ranks third in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit

Bonnie Prescott | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>