Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery proves cause of weight problems in Huntingon’s disease

07.04.2011
Huntington’s disease has long been linked to jerky movements. Now, researchers in Lund, Sweden, have shown that the metabolism can also be seriously affected by the hereditary disease. The new laboratory findings provide hope of entirely new treatment methods.

The study, which has been published in the scientific journal Cell Metabolism, shows significant changes in the brain’s hormone control centre, the hypothalamus. In a series of experiments on mice, which had the mutated Huntington’s protein injected into this area of their brains, the animals soon demonstrated a reduced ability to regulate their metabolism.

“With the selectively produced mutated protein, we saw immediate changes; the mice started to eat more and became very fat. We have now been able to prove that there is a causal relationship between this mutated protein in the hypothalamus and weight gain. The changes we see in the mice’s brains are similar to those we have previously observed in the brains of Huntington’s patients”, says doctor and researcher Åsa Petersén at Lund University.

The effects of the mutated Huntington’s protein disable the normal control of blood sugar levels in the body. It is probable that a resistance to insulin is developed, which makes some nerve cells deaf to important signals. This stops the complex metabolic system working.

The research group has previously shown that the pathological changes in the hypothalamus begin up to ten years before the movement problems are seen. This means that new treatments targeted at the small communications control centre, the hypothalamus, could provide relief to Huntington’s patients at a much earlier stage.

One of the most promising treatments that are currently being researched aims to ‘turn off’ the mutated Huntington’s gene. The research group in Lund has successfully tested the method on mice, with the result that they stopped developing irregularities in their metabolism.

“Our idea is to turn off the mutated gene in the hypothalamus. The problem is that we don’t want to turn off the normal Huntingtin gene, which still has an important function. We now hope to be able to refine our method and focus specifically on the mutated Huntingtin”, says Åsa Petersén.

The newly discovered changes in the hypothalamus in Huntington’s disease are a growing research field. The targets for new treatments are non-motor symptoms such as weight problems, sleeping problems and depression.

Contact: Åsa Petersén, MD, PhD, researcher at Lund University, Sverige +46 46 222 1686, work mobile: +46 709 422930; Asa.Petersen@med.lu.se

Megan Grindlay | idw
Further information:
http://www.cell.com/cell-metabolism/abstract/S1550-4131(11)00086-6
http://www.med.lu.se/expmed/translational_neuroendocrinology

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>