Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery proves cause of weight problems in Huntingon’s disease

07.04.2011
Huntington’s disease has long been linked to jerky movements. Now, researchers in Lund, Sweden, have shown that the metabolism can also be seriously affected by the hereditary disease. The new laboratory findings provide hope of entirely new treatment methods.

The study, which has been published in the scientific journal Cell Metabolism, shows significant changes in the brain’s hormone control centre, the hypothalamus. In a series of experiments on mice, which had the mutated Huntington’s protein injected into this area of their brains, the animals soon demonstrated a reduced ability to regulate their metabolism.

“With the selectively produced mutated protein, we saw immediate changes; the mice started to eat more and became very fat. We have now been able to prove that there is a causal relationship between this mutated protein in the hypothalamus and weight gain. The changes we see in the mice’s brains are similar to those we have previously observed in the brains of Huntington’s patients”, says doctor and researcher Åsa Petersén at Lund University.

The effects of the mutated Huntington’s protein disable the normal control of blood sugar levels in the body. It is probable that a resistance to insulin is developed, which makes some nerve cells deaf to important signals. This stops the complex metabolic system working.

The research group has previously shown that the pathological changes in the hypothalamus begin up to ten years before the movement problems are seen. This means that new treatments targeted at the small communications control centre, the hypothalamus, could provide relief to Huntington’s patients at a much earlier stage.

One of the most promising treatments that are currently being researched aims to ‘turn off’ the mutated Huntington’s gene. The research group in Lund has successfully tested the method on mice, with the result that they stopped developing irregularities in their metabolism.

“Our idea is to turn off the mutated gene in the hypothalamus. The problem is that we don’t want to turn off the normal Huntingtin gene, which still has an important function. We now hope to be able to refine our method and focus specifically on the mutated Huntingtin”, says Åsa Petersén.

The newly discovered changes in the hypothalamus in Huntington’s disease are a growing research field. The targets for new treatments are non-motor symptoms such as weight problems, sleeping problems and depression.

Contact: Åsa Petersén, MD, PhD, researcher at Lund University, Sverige +46 46 222 1686, work mobile: +46 709 422930; Asa.Petersen@med.lu.se

Megan Grindlay | idw
Further information:
http://www.cell.com/cell-metabolism/abstract/S1550-4131(11)00086-6
http://www.med.lu.se/expmed/translational_neuroendocrinology

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>