Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery proves cause of weight problems in Huntingon’s disease

07.04.2011
Huntington’s disease has long been linked to jerky movements. Now, researchers in Lund, Sweden, have shown that the metabolism can also be seriously affected by the hereditary disease. The new laboratory findings provide hope of entirely new treatment methods.

The study, which has been published in the scientific journal Cell Metabolism, shows significant changes in the brain’s hormone control centre, the hypothalamus. In a series of experiments on mice, which had the mutated Huntington’s protein injected into this area of their brains, the animals soon demonstrated a reduced ability to regulate their metabolism.

“With the selectively produced mutated protein, we saw immediate changes; the mice started to eat more and became very fat. We have now been able to prove that there is a causal relationship between this mutated protein in the hypothalamus and weight gain. The changes we see in the mice’s brains are similar to those we have previously observed in the brains of Huntington’s patients”, says doctor and researcher Åsa Petersén at Lund University.

The effects of the mutated Huntington’s protein disable the normal control of blood sugar levels in the body. It is probable that a resistance to insulin is developed, which makes some nerve cells deaf to important signals. This stops the complex metabolic system working.

The research group has previously shown that the pathological changes in the hypothalamus begin up to ten years before the movement problems are seen. This means that new treatments targeted at the small communications control centre, the hypothalamus, could provide relief to Huntington’s patients at a much earlier stage.

One of the most promising treatments that are currently being researched aims to ‘turn off’ the mutated Huntington’s gene. The research group in Lund has successfully tested the method on mice, with the result that they stopped developing irregularities in their metabolism.

“Our idea is to turn off the mutated gene in the hypothalamus. The problem is that we don’t want to turn off the normal Huntingtin gene, which still has an important function. We now hope to be able to refine our method and focus specifically on the mutated Huntingtin”, says Åsa Petersén.

The newly discovered changes in the hypothalamus in Huntington’s disease are a growing research field. The targets for new treatments are non-motor symptoms such as weight problems, sleeping problems and depression.

Contact: Åsa Petersén, MD, PhD, researcher at Lund University, Sverige +46 46 222 1686, work mobile: +46 709 422930; Asa.Petersen@med.lu.se

Megan Grindlay | idw
Further information:
http://www.cell.com/cell-metabolism/abstract/S1550-4131(11)00086-6
http://www.med.lu.se/expmed/translational_neuroendocrinology

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>