Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery points way for new treatment for aneurysms: UBC-Providence Research

28.01.2010
New research findings from a team at the Providence Heart + Lung Institute at St. Paul's Hospital and the University of British Columbia (UBC) may lead to new treatment options for abdominal aortic aneurysms (AAA) – a potentially fatal disease that currently has no pharmacological treatments.

An aortic aneurysm is a bulging of the aorta, the largest blood vessel in the body. If the aneurysm ruptures, it causes rapid blood loss and a high risk of death. About 75 per cent of all aortic aneurysms occur in the part of the aorta that is located in the abdomen, which supplies blood to the lower limbs.

Published in today's American Journal of Pathology, a study led by Dr. David Granville, a researcher with UBC and the Providence Heart + Lung Institute, reveals a novel therapeutic target for AAA that could have a major impact on the treatment of this disease.

Using experimental models of AAA, Dr. Granville and his team identified a protein-degrading enzyme called Granzyme B that is abundant in aneurysms. To determine whether Granzyme B was contributing to aneurysms, the enzyme was genetically knocked out.

"When we removed Granzyme B, we found that it not only slowed the progression of aneurysms, but also markedly improved survival," says Dr. Granville. "This suggests that drugs designed specifically to target Granzyme B could be an effective means of treating aneurysms."

Granzyme B is released by many types of immune cells to target and destroy unwanted or virus-infected cells.

Until recently, it was thought that immune cells delivered Granzyme B directly into cells targeted for destruction, but Dr. Granville's team demonstrates that, in certain conditions, this protein can leak out into the space surrounding healthy cells and in the blood stream. As it builds up outside of cells it starts breaking down structural proteins that maintain tissue integrity – similar to a termites eating away at the infrastructure of a home. In the case of the aorta, this can lead to a weakening of the structure, ballooning of the aorta (creating an aneurysm) and ultimately, the rupturing of the aneurysm.

Currently the 13th leading cause of death in North America, AAA has an 80 – 90 per cent chance of fatality if the aneurysm ruptures. Ruptured AAA and complications of surgical treatment are responsible for at least 15,000 deaths each year in the United States. However, as autopsies are not routinely performed for people over the age of 60, it is suggested that the actual rate may be as high as 30,000 deaths per year – a mortality rate close to that of prostate and breast cancers. Currently, the only effective treatment interventions involve surgical repair at late stages of disease. There are no treatments for smaller, earlier-stage aneurysms beyond basic monitoring of progression.

"As an aging-related disease, the incidence of AAA is on the rise, yet there are currently no early treatment options beyond basic monitoring of progression and surgery when the risk of rupture is greater than the risk of surgery," says Dr. Granville. "Our latest findings about Granzyme B could lead to the development of pharmaceuticals geared towards slowing or preventing aneurysm progression and rupture – helping those with AAA avoid surgical treatment, and possibly death."

Several patents have been filed relating to Dr. Granville's research. This has led to the formation of spin-off company viDA Therapeutics (www.vidatherapeutics.com), an early-stage biotechnology company spearheaded by President and CEO Alistair Duncan, which is developing first-in-class drugs for the treatment of age-related chronic inflammatory conditions.

Dr. Granville, Ph.D., is an Associate Professor at the University of British Columbia and the Providence Heart and Lung Institute at St. Paul's Hospital. In 2004, he was chosen as one of Canada's Top 40 Under 40 by Caldwell Partners International and will be receiving a Top Forty Under 40 award by Business in Vancouver on January 28. His research is funded by the Canadian Institutes of Health Research and the Heart and Stroke Foundation of BC & Yukon.

The Providence Heart + Lung Institute at St. Paul's Hospital merges and integrates all of Providence Health Care's heart and lung research, education and care programs, making it the only one of its kind in Canada. www.heartandlung.ca.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>