Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery points to new approach for diabetes therapy

13.07.2010
Nutrition experts at Oregon State University have essentially “cured” laboratory mice of mild, diet-induced diabetes by stimulating the production of a particular enzyme.

The findings could offer a new approach to diabetes therapy, experts say, especially if a drug could be identified that would do the same thing, which in this case was accomplished with genetic manipulation.

Increased levels of this enzyme, called fatty acid elongase-5, restored normal function to diseased livers in mice, restored normal levels of blood glucose and insulin, and effectively corrected the risk factors incurred with diet-induced diabetes.

“This effect was fairly remarkable and not anticipated,” said Donald Jump, a professor of nutrition and exercise sciences at Oregon State, where he is an expert on lipid metabolism and principal investigator with OSU’s Linus Pauling Institute.

“It doesn’t provide a therapy yet, but could be fairly important if we can find a drug to raise levels of this enzyme,” Jump said. “There are already some drugs on the market that do this to a point, and further research in the field would be merited.”

The studies were done on a family of enzymes called “fatty acid elongases,” which have been known of for decades. Humans get essential fatty acids that they cannot naturally make from certain foods in their diet. These essential fatty acids are converted to longer and more unsaturated fatty acids. The fatty acid end products of these reactions are important for managing metabolism, inflammation, cognitive function, cardiovascular health, reproduction, vision and other metabolic roles.

The enzymes that do this are called fatty acid elongases, and much has been learned in recent years about them. In research on diet-induced obesity and diabetes, OSU studied enzyme conversion pathways, and found that elongase-5 was often impaired in mice with elevated insulin levels and diet-induced obesity.

The scientists used an established system, based on a recombinant adenovirus, to import the gene responsible for production of elongase-5 into the livers of obese, diabetic mice. When this “delivery system” began to function and the mice produced higher levels of the enzyme, their diet-induced liver defects and elevated blood sugar disappeared.

“The use of a genetic delivery system such as this was functional, but it may not be a permanent solution,” Jump said. “For human therapy, it would be better to find a drug that could accomplish the same thing, and that may be possible. There are already drugs on the market, such as some fibrate drugs, that induce higher levels of elongase-5 to some extent.”

There are also drugs used with diabetic patients that can lower blood sugar levels, Jump said, but some have side effects and undesired complications. The potential for raising levels of elongase-5 would be a new, specific and targeted approach to diabetes therapy, he said. While lowering blood sugar, the elevated levels of elongase-5 also reduced triglycerides in the liver, another desirable goal. Elevated triglycerides are associated with “fatty liver,” also known as non-alcoholic fatty liver disease. This can progress to more severe liver diseases such as fibrosis, cirrhosis and cancer.

Further research is needed to define the exact biological mechanisms at work in this process, and determine what the fatty acids do that affects carbohydrate and triglyceride metabolism, he said. It appears that high fat diets suppress elongase-5 activity.

“These studies establish a link between fatty acid elongation and hepatic glucose and triglyceride metabolism,” the researchers wrote in their report, “and suggest a role for regulators of elongase-5 activity in the treatment of diet-induced hyperglycemia and fatty liver.”

The study was published in the Journal of Lipid Research. The research was supported by the National Institutes of Health and the National Institute for Food and Agriculture of the U.S. Department of Agriculture.

About the Linus Pauling Institute: The Linus Pauling Institute at OSU is a world leader in the study of micronutrients and their role in promoting optimum health or preventing and treating disease. Major areas of research include heart disease, cancer, aging and neurodegenerative disease.

Donald Jump | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>