Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery points to new approach for diabetes therapy

13.07.2010
Nutrition experts at Oregon State University have essentially “cured” laboratory mice of mild, diet-induced diabetes by stimulating the production of a particular enzyme.

The findings could offer a new approach to diabetes therapy, experts say, especially if a drug could be identified that would do the same thing, which in this case was accomplished with genetic manipulation.

Increased levels of this enzyme, called fatty acid elongase-5, restored normal function to diseased livers in mice, restored normal levels of blood glucose and insulin, and effectively corrected the risk factors incurred with diet-induced diabetes.

“This effect was fairly remarkable and not anticipated,” said Donald Jump, a professor of nutrition and exercise sciences at Oregon State, where he is an expert on lipid metabolism and principal investigator with OSU’s Linus Pauling Institute.

“It doesn’t provide a therapy yet, but could be fairly important if we can find a drug to raise levels of this enzyme,” Jump said. “There are already some drugs on the market that do this to a point, and further research in the field would be merited.”

The studies were done on a family of enzymes called “fatty acid elongases,” which have been known of for decades. Humans get essential fatty acids that they cannot naturally make from certain foods in their diet. These essential fatty acids are converted to longer and more unsaturated fatty acids. The fatty acid end products of these reactions are important for managing metabolism, inflammation, cognitive function, cardiovascular health, reproduction, vision and other metabolic roles.

The enzymes that do this are called fatty acid elongases, and much has been learned in recent years about them. In research on diet-induced obesity and diabetes, OSU studied enzyme conversion pathways, and found that elongase-5 was often impaired in mice with elevated insulin levels and diet-induced obesity.

The scientists used an established system, based on a recombinant adenovirus, to import the gene responsible for production of elongase-5 into the livers of obese, diabetic mice. When this “delivery system” began to function and the mice produced higher levels of the enzyme, their diet-induced liver defects and elevated blood sugar disappeared.

“The use of a genetic delivery system such as this was functional, but it may not be a permanent solution,” Jump said. “For human therapy, it would be better to find a drug that could accomplish the same thing, and that may be possible. There are already drugs on the market, such as some fibrate drugs, that induce higher levels of elongase-5 to some extent.”

There are also drugs used with diabetic patients that can lower blood sugar levels, Jump said, but some have side effects and undesired complications. The potential for raising levels of elongase-5 would be a new, specific and targeted approach to diabetes therapy, he said. While lowering blood sugar, the elevated levels of elongase-5 also reduced triglycerides in the liver, another desirable goal. Elevated triglycerides are associated with “fatty liver,” also known as non-alcoholic fatty liver disease. This can progress to more severe liver diseases such as fibrosis, cirrhosis and cancer.

Further research is needed to define the exact biological mechanisms at work in this process, and determine what the fatty acids do that affects carbohydrate and triglyceride metabolism, he said. It appears that high fat diets suppress elongase-5 activity.

“These studies establish a link between fatty acid elongation and hepatic glucose and triglyceride metabolism,” the researchers wrote in their report, “and suggest a role for regulators of elongase-5 activity in the treatment of diet-induced hyperglycemia and fatty liver.”

The study was published in the Journal of Lipid Research. The research was supported by the National Institutes of Health and the National Institute for Food and Agriculture of the U.S. Department of Agriculture.

About the Linus Pauling Institute: The Linus Pauling Institute at OSU is a world leader in the study of micronutrients and their role in promoting optimum health or preventing and treating disease. Major areas of research include heart disease, cancer, aging and neurodegenerative disease.

Donald Jump | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>