Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery offers new understanding of diabetes drug target

26.09.2008
Scientists at the University of Leicester have published findings about a new advance in the study of major diabetes drug target.

The advance - described by the researchers as 'very significant' - could lead to new drugs being developed to target a protein that plays a critical role in controlling the way the body breaks down sugar.

Professor John Schwabe and his team from the University of Leicester Department of Biochemistry (together with teams from Japan and Hungary) have been studying the protein, PPAR gamma. PPAR gamma is a major drug target for the treatment of type 2 diabetes. Although it was known how drugs are able to activate this protein, until this study, using the sophisticated technique of X-ray Crystallography, it was not clear how PPAR gamma is naturally activated in the body.

X-ray Crystallography is the principal method by which the detailed 3- dimensional structures of molecules - especially the molecules of living systems - have been discovered. It is achieved by firing X-rays at the target and creating its structures by analysing how the x-rays scatter into many different directions.

Through this method, the Leicester team have shown how PPAR gamma binds to eight different fatty acids, derived in part from what we eat. They found that many of these acids joined irreversibly with the protein and led to its long term activation. They have also shown that sometimes two fatty acids bind simultaneously, which might mean that PPAR gamma could be targeted by a mixture of drugs.

Professor John Schwabe, who led the Leicester project with his team, including Dr Toshimasa Itoh and Dr Louise Fairall, said: "The finding that natural activators for PPAR gamma couple irreversibly to the PPAR gamma receptor dramatically changes our understanding of how this receptor is activated.

"It may also allow for the design of novel pharmaceuticals that give longer term activation of PPAR gamma, at lower doses, without some of the side effects of the current generation of drugs."

Professor Schwabe said: "PPAR gamma is a critical player in the increasingly prevalent metabolic disease of type 2 diabetes which affects more than 180 million people worldwide (World Health Organisisation) and in the UK alone costs the NHS £9.6 million every day.

"PPARgamma is activated by two widely prescribed anti-diabetic insulin- sensitising drugs, Actos and Avandia. However the identity of the natural activators for PPAR gamma has remained unclear.

"Our breakthrough is important because it reveals for the first time that how this protein is activated by naturally-occuring fatty acids. This knowledge will help in the design of future novel pharmaceutical agents."

The research has been published in the journal Nature Structural and Molecular Biology. The paper will also be featured as a Highlight in the journal Nature Chemical Biology and has been designated a “Must Read” by the Faculty of 1000. The research was funded by the University of Leicester and the Wellcome Trust.

Ather Mirza | alfa
Further information:
http://www.who.int/mediacentre/factsheets/fs312/en/
http://www.diabetes.nhs.uk/diabetesinthenhs.pdf
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>