Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery leads to new hope against ovarian cancer

New drug may be an effective alternative for patients whose cancer is resistant to currently available drugs

Scientists at USC have discovered a new type of drug for the treatment of ovarian cancer that works in a way that should not only decrease the number of doses that patients need to take, but also may make it effective for patients whose cancer has become drug-resistant.

The drug, which so far has been tested in the lab on ovarian cancer cells and on mice tumors, was unveiled last month in the Proceedings of the National Academy of Sciences (PNAS).

"We need a new generation of drugs," said Shili Xu, a USC graduate student and lead author of the PNAS paper. "We need to overcome the drug-resistance issue."

The drug is a member of a new class of cytotoxic agents abbreviated as PACMA that was discovered by testing roughly 10,000 chemical compounds on cancer cells in the lab of Nouri Neamati, professor of pharmacology and pharmaceutical sciences at the USC School of Pharmacy, and a co-corresponding author of the paper.

These initial findings led to a collaboration with Nicos Petasis, co-corresponding author of the paper and professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences, with appointments at the School of Pharmacy and the USC Norris Comprehensive Cancer Center of the Keck School of Medicine of USC. This joint effort led to a study of PACMA compounds that was reported last year in the Journal of Medicinal Chemistry.

In order to investigate and optimize the anticancer properties of PACMAs, co-author Alexey Butkevich, a graduate student in the Petasis lab, synthesized more than 80 newly designed compounds. One of these, called PACMA31, was eventually found to be very toxic to ovarian cancer cells and was shown to be a potentially effective drug.

In the PNAS paper, Xu and his co-authors reported that PACMA31 is a potent and selective inhibitor of a protein called Protein Disulfide Isomerase (PDI) that is highly expressed in ovarian cancer.

PACMA31 can be taken orally and accumulates in cancer cells, which means that it is less likely to cause harmful side effects in normal tissues. It is also what is known as an "irreversible" drug, meaning that it permanently latches on to its target, PDI, and refuses to wear off until the protein is degraded.

That irreversibility may result in prolonged duration of drug action that could translate into giving the patients lower doses of drugs.

"We are exploring combination studies in order to find synergy between our drug and first-line therapy for ovarian cancer," Neamati said.

Currently, there are two major types of drugs in the first-line treatment of ovarian cancer: paclitaxel, which hinders cancer cell division by inhibiting the disassembly of microtubules; and carboplatin, which binds to and causes crosslinking of DNA that results in the death of cancer cells.

PACMA31 attacks cancer cells in yet a different way, targeting PDI and thus interrupting the folding process during which proteins assume the shapes that allow them to function properly. Accumulation of misfolded proteins in a cell causes cellular stress and eventually cancer cell death.

Because PACMA31's strategy is different than that of current anticancer drugs, it has the potential to help patients who do not respond to paclitaxel or cisplatin.

"When the patient has no other choice, we could potentially treat them with our drug," Neamati said.

Other co-authors of the PNAS paper included Roppei Yamada, Yu Zhou, Bikash Debnath and Professors Roger Duncan and Ebrahim Zandi. Additional contributors to the PACMA project and co-authors to the team's first paper included Xuefei Cao, Melissa Millard, Srinivas Odde, Nick Mordwinkin, Rambabu Gundla and Professor Stan Louie.

"The discovery of this new drug and its novel mechanism of action is a great example of the power of interdisciplinary collaborations between chemists, biologists, pharmacologists and other biomedical researchers," Petasis said.

The drug will still require additional testing, but so far it appears to be nontoxic and effective at halting tumor growth. It may also have potential for treating other types of cancer, Neamati noted.

"Obviously, we think that it will go beyond ovarian cancer," he said.

Funding for the research came from the USC Zumberge Research and Innovation Fund, the American Chemical Society, the William Cockrell Endowed Cancer Research Fund and the U.S. Department of Defense Ovarian Cancer program.

Robert Perkins | EurekAlert!
Further information:

Further reports about: Cancer Discovery PACMA PDI PNAS Petasis Pharmacy Science TV USC cancer cells cancer drug ovarian cancer

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>