Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may lead to new treatments for allergic diseases

12.11.2013
A collaboration among researchers in Israel and the United States has resulted in the discovery of a new pathway that has broad implications for treating allergic diseases – particularly eosinophil-associated disorders.

The researchers from Tel Aviv University and Cincinnati Children's Hospital Medical Center have discovered how this pathway kills eosinophils before they can cause havoc.

Eosinophils are normal cellular components of the blood, but when the body produces too many eosinophils they can cause a variety of eosinophilic disorders. These are disorders involving chronic inflammation resulting in tissue damage, often in the gastrointestinal system.

The study is published online in the journal Nature Immunology.

"The fundamental knowledge we have gained may one day yield new therapies to treat devastating eosinophilic disorders," says Ariel Munitz, PhD, a researcher at the department of Clinical Microbiology and Immunology at the Sackler School of Medicine at Tel Aviv University and corresponding author of the study.

Eosinophils are regulated by interleukin 5 (IL-5), a protein that triggers eosinophils to leave the bone marrow and enter the bloodstream, where they can reach various organs. Dr. Munitz and Marc Rothenberg, MD, PhD, director of Allergy and Immunology at Cincinnati Children's, have identified a pathway for counterbalancing what happens when IL-5 triggers eosinophils. The newly identified pathway involves a key checkpoint controlled by a pair of proteins, PIR-A and PIR-B, which the researchers now show have a critical role in eosinophil development.

PIR-A induces eosinophils to die and thus is in a perpetual tug-of-war with survival and growth signals driven by IL-5. The researchers discovered that PIR-A is dominant in this battle but that cell death doesn't occur because PIR-B inhibits its actions. For PIR-A to win the battle and cause cells to die, PIR-B must be shut down.

The researchers studied asthmatic mice and discovered that asthmatic mice without PIR-B had little expansion of eosinophils in their blood and lungs and less asthmatic inflammation in their lungs than normal mice. The lack of PIR-B kept eosinophils from reaching harmful levels. The researchers hope that scientists can now target PIR-A to enhance its ability to kill eosinophils or weaken PIR-B so that it inhibits PIR-A to a lesser extent.

The study was led by Netali Baruch-Morgenstern and Dana Shik from the Munitz lab. They are graduate students at Tel Aviv University who spent part of their training in Dr. Rothenberg's lab at Cincinnati Children's. Dr. Munitz is a former research fellow in Dr. Rothenberg's lab.

The study was funded in part by a grant from the United States-Israel Binational Science Foundation (grant number 2009222), which promotes scientific relations between the U.S. and Israel by supporting collaborative research projects in a wide area of basic and applied scientific fields.

Funding also came from the FP7 Marie-Curie Reintegration grant (grant number 256311), the Israel Science Foundation (grant numbers 955/11 and 1708/11), the Israel Cancer Research Foundation Research Career Development Award, the Fritz Thyssen Foundation, the US-Israel Bi-national Science Foundation, the National Institute of Allergy and Infectious Diseases, (R01AI083450, R37AI045898), CURED Foundation, FARE, and Buckeye Foundation.

The study also is the result of the Israel Exchange Program (IEP) at Cincinnati Children's. The IEP is a collaboration with leading Israeli institutions to improve clinical care for children, train pediatric providers and researchers, advance scientific research and make technological breakthroughs that benefit children throughout the world. Collaborations include Israeli and Cincinnati Children's physicians jointly treating patients with complex conditions in Cincinnati and Israel; clinical and research postdoctoral fellowships at Cincinnati Children's for Israelis; short-term training opportunities at Cincinnati Children's for Israeli physicians, nurses, students, paraprofessionals and hospital administrators; grants to support collaborative research; co-sponsorship of conferences and research symposia in Israel and Cincinnati; and technology collaborations with Israeli start-ups and universities.

Related links

Munitz lab: http://www.tau.ac.il/~arielm/Ariel_Munitz,_PhD/Welcome.html

Rothenberg lab: http://www.cincinnatichildrens.org/research/divisions/a/allergy-immunology/labs/rothenberg/default/

Rothenberg lab Facebook page: http://www.facebook.com/RothenbergEosinophilicLab

Cincinnati Center for Eosinophilic Disorders: http://www.cchmc.org/cced

Israel Exchange Program: http://www.cincinnatichildrens.org/service/g/global/israel/default/

About Cincinnati Children's:

Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S.News and World Report's 2013 Best Children's Hospitals ranking. It is ranked #1 for cancer and in the top 10 for nine of 10 pediatric specialties. Cincinnati Children's, a non-profit organization, is one of the top three recipients of pediatric research grants from the National Institutes of Health, and a research and teaching affiliate of the University of Cincinnati College of Medicine. The medical center is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at http://www.cincinnatichildrens.org. Connect on the Cincinnati Children's blog, via Facebook and on Twitter.

Nick Miller | EurekAlert!
Further information:
http://www.cchmc.org

Further reports about: Gates Foundation Immunology Medical Wellness Nature Immunology

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>