Discovery provides hope for sufferers of disfiguring bone disease

Bones in the skulls and face of sufferers fuse together prematurely causing a range of distressing developmental problems. Some of the affected children also suffer from defects in the limbs, brain, kidneys and lungs.

Depending on the severity of their disease and its underlying cause, children suffering with craniosynostosis survive from as little as a few days to as long as early adulthood.

Led by Dr Mohammad Hajihosseini, the UEA scientists focused on Apert Syndrome – the most severe of the craniosynostosis range of diseases that is caused by mutations in a gene called Fibroblast Growth Factor Receptor 2 (FGFR2). They identified a key offending molecule – FGF10 and demonstrated for the first time that 'dampening down' the levels of this offending molecule can reverse the effects of the disease.

Published in the journal 'Developmental Dynamics', the findings are the culmination of five years work and vastly increase our understanding of this tragic childhood disease.

“The next step is to research how best to translate this discovery into an effective treatment,” said Dr Hajihosseini. “Given the appropriate funding, in the not too distant future a gel or similar vehicle could be developed that can be surgically applied to the fusing joints of the skull – thus reversing the effects of the disease.”

Media Contact

Simon Dunford EurekAlert!

More Information:

http://www.uea.ac.uk

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors