Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery helps mice beat urinary tract infections

19.06.2012
Scientists at Washington University School of Medicine in St. Louis have found new clues to why some urinary tract infections recur persistently after multiple rounds of treatment.

Their research, conducted in mice, suggests that the bacteria that cause urinary tract infections take advantage of a cellular waste disposal system that normally helps fight invaders. In a counterintuitive finding, they learned that when the disposal system was disabled, the mice cleared urinary tract infections much more quickly and thoroughly.

"This could be the beginning of a paradigm shift in how we think about the relationship between this waste disposal system, known as autophagy, and disease-causing organisms," says senior author Indira Mysorekar, PhD, assistant professor of obstetrics and gynecology and of pathology and immunology. "There may be other persistent pathogens that have found ways to exploit autophagy, and that information will be very useful for identifying new treatments."

The results will be published the week of June 18, 2012, in the early online edition of The Proceedings of the National Academy of the Sciences.

Urinary tract infections are very common, particularly in women. In the United States alone, annual treatment costs are estimated to run as high as $1.6 billion. Scientists believe 80 percent to 90 percent of these infections are caused by the bacterium Escherichia coli (E. coli).

Data from the new study and earlier results have led Mysorekar and her colleagues to speculate that E. coli that cause recurrent urinary tract infections may hide in garbage-bin-like compartments within the cells that line the urinary tract.

These compartments, found in nearly all cells, are called autophagosomes. They sweep up debris within the cell, including harmful bacteria and worn-out cell parts. Then, they merge with other compartments in the cell that are filled with enzymes that break down the contents of autophagosomes.

"We think, but can't yet prove, that the bacteria have found a way to block this final step, " Myosrekar says. "This would transform the autophagosome from a death trap into a safe haven where the bacteria can wait, hidden from the immune system, for their next chance to start an infection."

In the new research, Mysorekar teamed with colleagues at the School of Medicine who had developed mice in which both copies of an important autophagy gene, Atg16L1, were impaired. Co-author Herbert W. Virgin, MD, PhD, Edward Mallinckrodt Professor and head of the Department of Pathology and Immunology, and others created the mice to study Crohn's disease, a chronic bowel inflammation associated with mutations in Atg16L1.

Co-lead authors Caihong Wang, DVM, PhD, a staff scientist, and Jane Symington, an MD/PhD student in the Mysorekar group, infected the mice with E. coli. The researchers found that bacteria levels in the urinary tracts of the modified mice decreased much more rapidly after infection than they did in normal mice. Cells lining the urinary tract in mice with the mutated gene also had significantly fewer dormant reservoirs of E. coli than in normal mice.

The scientists identified structural changes in urinary tract cells of the mice with Atg16L1 mutations that may help explain their unexpected results. These changes may have made it much more difficult for the bacteria to find and break into autophagosomes, Mysorekar says.

The altered gene also was associated with changes in the immune system. In the modified mice, E. coli infections in the urinary tract led cells to produce more inflammatory immune factors and prompted additional bacteria-fighting immune cells to come to the site of the infection.

"The immune system appears to be primed to attack at the slightest provocation in the mice with mutations," Mysorekar says. "This may be why mutations in Atg16L1 are also connected with Crohn's disease, which involves immune cells erroneously attacking beneficial microorganisms in the gut."

Mutations in Atg16L1 are quite common, according to Virgin, although not everyone who has a mutated form of the gene will get Crohn's disease.

"These new results may help explain why the mutations have persisted for so long in the general population," he says. "They don't just put the carrier at risk of Crohn's disease, they also may have a protective effect that helps fight infections."

Mysorekar plans to investigate how E. coli takes advantage of a fully functioning autophagy system in mice with urinary tract infections.

Wang C, Mendonsa GR, Symington JW, Zhang Q, Cadwell K, Virgin HW, Mysorekar IU. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. The Proceedings of the National Academy of Sciences, early online edition, week of June 18, 2012.

Funding from National Institute of Child Health and Human Development Grant T32-54560 (to G.R.M.), U54AI057160, Project 5 (to H.W.V.) and K99/R00 Pathway to Independence Award DK080643 (to I.U.M.) supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>