Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery helps explain why chemo causes drop in platelet numbers

26.09.2011
Scientists at the Walter and Eliza Hall Institute have identified a way that chemotherapy causes platelet numbers to drop, answering in the process a decade-old question about the formation of platelets, tiny cells that allow blood to clot.

Platelets are formed by a process called 'shedding' where small fragments break off megakaryocytes (large cells normally found in the bone marrow).

Drs Emma Josefsson, Chloé James and Benjamin Kile from the institute's Molecular Medicine and Cancer and Haematology divisions have been investigating how the survival of platelet- forming megakaryocytes is controlled at a molecular level.

The life-or-death decisions of cells are controlled by the Bcl-2 family of proteins. Some 'pro-death' Bcl-2 family proteins cause cells to die, while an opposing 'pro-survival' faction prevents cell death, allowing cells to survive.

In the past decade it has been thought that platelets are formed by megakaryocytes through a process similar to cell death, Dr Josefsson said. "Our research tested this assumption by examining the molecules that are required for programmed cell death. We found that, at a molecular level, platelet formation does not occur by a death-like process.

"We found that pro-death Bcl-2 family proteins were not required for platelet formation from megakaryocytes," Dr Josefsson said. "In fact, pro-survival Bcl-2 family proteins are essential for keeping megakaryocytes alive so they can make platelets."

Low platelet numbers are a side-effect of chemotherapy and, whilst this has long been ascribed to the death of megakaryocytes and their precursors, the mechanisms responsible have remained unclear. The research team showed that chemotherapy kills megakaryocytes by its action on Bcl-2 family proteins, Dr Josefsson said. "Our work has shown that chemotherapy activates 'pro-death' Bcl-2 proteins to kill megakaryocytes, meaning patients are less capable of producing platelets as they recover from cancer treatment." The research was published today in the Journal of Experimental Medicine.

Institute scientist Professor Don Metcalf has researched blood formation for the past 50 years and was part of the research team. "For the past decade many researchers around the world have been wondering what role Bcl-2-family proteins play in platelet formation," he said. "This study is important for resolving a longstanding debate about platelet formation, and in the long term may lead to new strategies to prevent chemotherapy-induced thrombocytopenia (a deficiency in platelets)."

The research was supported by the National Health and Medical Research Council, the Sylvia and Charles Viertel Foundation, the Leukaemia Foundation of Australia, the Leukemia & Lymphoma Society (USA), the Swedish Research Council, the European Molecular Biology Organisation, the Victorian Cancer Agency, Cancer Council Victoria, the Australian Cancer Research Fund, the Victorian Government and the Australian Government.

Penny Fannin | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>