Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about the formation of new brain cells

23.11.2009
The generation of new nerve cells in the brain is regulated by a peptide known as C3a, which directly affects the stem cells' maturation into nerve cells and is also important for the migration of new nerve cells through the brain tissue, reveals new research from the Sahlgrenska Academy published in the journal Stem Cells.

Although the research has been carried out using mice and cultured cells, it could lead to a new medicine for human beings, which could be given to patients who have had a stroke or other disorders that damage or destroy the nerve cells.

"Our research findings show that it could be possible to use molecules that are similar to the peptide C3a to boost the formation of nerve cells and stimulate the replacement of nerve cells lost due to injury or illness," says senior lecturer Marcela Pekna who headed the research group at the Sahlgrenska Academy.

The peptide C3a is generated through the activation of the complement system, a group of proteins in the blood that is essential for the body's immune defence.

"Our research group was the first in the world to show that the complement system also plays an important role in the repair and regeneration of the brain," says Pekna. "This was a surprising discovery that opened up a whole new field of research."

NEW NERVE CELLS
New nerve cells are formed in the brain throughout our lives. The brain's stem cells are formed in the hippocampus and the subventricular zone, an area next to the fluid-filled cavities (lateral ventricles). Stem cells from the subventricular zone mature into nerve cells in the olfactory bulb, but can also migrate out into the brain to replace nerve cells that have been damaged or destroyed. By finding out more about how new nerve cells are formed and what controls their migration, stem cell researchers hope to find new ways of treating stroke, Parkinson's disease and other disorders that result from the nerve cells failing to function as they should.
For more information, please contact:
Senior lecturer Marcela Pekna, tel: +46 31 786 35 81, mobile: +46 70 932 34 85
Journal: Stem Cells
Title of the article: Complement-derived Anaphylatoxin C3a Regulates In Vitro Differentiation and Migration of Neural Progenitor Cells

Authors: Noriko Shinjyo, Anders Ståhlberg, Mike Dragunow, Milos Pekny, Marcela Pekna

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>