Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about the formation of new brain cells

23.11.2009
The generation of new nerve cells in the brain is regulated by a peptide known as C3a, which directly affects the stem cells' maturation into nerve cells and is also important for the migration of new nerve cells through the brain tissue, reveals new research from the Sahlgrenska Academy published in the journal Stem Cells.

Although the research has been carried out using mice and cultured cells, it could lead to a new medicine for human beings, which could be given to patients who have had a stroke or other disorders that damage or destroy the nerve cells.

"Our research findings show that it could be possible to use molecules that are similar to the peptide C3a to boost the formation of nerve cells and stimulate the replacement of nerve cells lost due to injury or illness," says senior lecturer Marcela Pekna who headed the research group at the Sahlgrenska Academy.

The peptide C3a is generated through the activation of the complement system, a group of proteins in the blood that is essential for the body's immune defence.

"Our research group was the first in the world to show that the complement system also plays an important role in the repair and regeneration of the brain," says Pekna. "This was a surprising discovery that opened up a whole new field of research."

NEW NERVE CELLS
New nerve cells are formed in the brain throughout our lives. The brain's stem cells are formed in the hippocampus and the subventricular zone, an area next to the fluid-filled cavities (lateral ventricles). Stem cells from the subventricular zone mature into nerve cells in the olfactory bulb, but can also migrate out into the brain to replace nerve cells that have been damaged or destroyed. By finding out more about how new nerve cells are formed and what controls their migration, stem cell researchers hope to find new ways of treating stroke, Parkinson's disease and other disorders that result from the nerve cells failing to function as they should.
For more information, please contact:
Senior lecturer Marcela Pekna, tel: +46 31 786 35 81, mobile: +46 70 932 34 85
Journal: Stem Cells
Title of the article: Complement-derived Anaphylatoxin C3a Regulates In Vitro Differentiation and Migration of Neural Progenitor Cells

Authors: Noriko Shinjyo, Anders Ståhlberg, Mike Dragunow, Milos Pekny, Marcela Pekna

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>