Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New discovery about the formation of new brain cells

The generation of new nerve cells in the brain is regulated by a peptide known as C3a, which directly affects the stem cells' maturation into nerve cells and is also important for the migration of new nerve cells through the brain tissue, reveals new research from the Sahlgrenska Academy published in the journal Stem Cells.

Although the research has been carried out using mice and cultured cells, it could lead to a new medicine for human beings, which could be given to patients who have had a stroke or other disorders that damage or destroy the nerve cells.

"Our research findings show that it could be possible to use molecules that are similar to the peptide C3a to boost the formation of nerve cells and stimulate the replacement of nerve cells lost due to injury or illness," says senior lecturer Marcela Pekna who headed the research group at the Sahlgrenska Academy.

The peptide C3a is generated through the activation of the complement system, a group of proteins in the blood that is essential for the body's immune defence.

"Our research group was the first in the world to show that the complement system also plays an important role in the repair and regeneration of the brain," says Pekna. "This was a surprising discovery that opened up a whole new field of research."

New nerve cells are formed in the brain throughout our lives. The brain's stem cells are formed in the hippocampus and the subventricular zone, an area next to the fluid-filled cavities (lateral ventricles). Stem cells from the subventricular zone mature into nerve cells in the olfactory bulb, but can also migrate out into the brain to replace nerve cells that have been damaged or destroyed. By finding out more about how new nerve cells are formed and what controls their migration, stem cell researchers hope to find new ways of treating stroke, Parkinson's disease and other disorders that result from the nerve cells failing to function as they should.
For more information, please contact:
Senior lecturer Marcela Pekna, tel: +46 31 786 35 81, mobile: +46 70 932 34 85
Journal: Stem Cells
Title of the article: Complement-derived Anaphylatoxin C3a Regulates In Vitro Differentiation and Migration of Neural Progenitor Cells

Authors: Noriko Shinjyo, Anders Ståhlberg, Mike Dragunow, Milos Pekny, Marcela Pekna

Helena Aaberg | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>