Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could help treatments for sickle cell disease

09.08.2016

Research team establishes biomarkers for the inherited blood disorder

An interdisciplinary, international group of researchers has found new biophysical markers that could help improve the understanding of treatments for sickle cell disease, a step toward developing better methods for treating the inherited blood disorder that affects an estimated 80,000 to 100,000 Americans each year.


Researchers have established new biomarkers that could help improve the understanding of sickle cell disease treatments. 1) Researchers separated cells in blood samples from patients with sickle cell disease to isolate cells of different densities. Hydroxyurea, an FDA-approved drug, improved the biophysical markers across all densities. 2) Red blood cells in people with the disease have an abnormal type of hemoglobin that causes the cells to become sickle shaped when they lose oxygen. 3.) The least dense cells were disc-shaped and most like normal red blood cells. 4) When the sickled blood cells return to areas of the body with more oxygen, most of them regain their original shape, while accumulating damages after each sickling cycle. 5) As the cells circulate through the body repeatedly, they gradually become more dense and some of them become irreversibly sickled. Credit: Carnegie Mellon University

Credit: Carnegie Mellon University

"There is a critical need for patient-specific biomarkers that can be used to assess the effectiveness of treatments for sickle cell disease," said Subra Suresh, president of Carnegie Mellon University and co-author of the study. "This study shows how techniques commonly used in engineering and physics can help us to better understand how the red blood cells in people with sickle cell disease react to treatment, which could lead to improved diagnostics and therapies."

The findings from engineers, physicists and clinicians from Carnegie Mellon, the University of Pittsburgh, the Massachusetts Institute of Technology, Florida Atlantic University, Korea University, the Korea Advanced Institute of Science and Technology, and Harvard University will be published this week in the online early edition of the Proceedings of the National Academy of Sciences (PNAS).

People with sickle cell disease have an abnormal form of hemoglobin, a protein found in red blood cells that carry oxygen throughout the body. Normal red blood cells are flexible discs that easily bend and stretch to flow through the body's narrow blood vessels.

In sickle cell disease, the abnormal hemoglobin forms fibers that cause the blood cells to take on a flattened, sickled shape and stiffen when they lose oxygen. This change in shape and rigidity causes the red blood cells to be stuck in the blood vessels and prevents the transport of oxygen to the surrounding tissue. This can cause anemia and extreme pain and impact the health of the body's tissue and organs.

Currently, hydroxyurea is the only FDA-approved drug for sickle cell disease. The drug reduces sickling in red blood cells and is used to treat pain and reduce the need for blood transfusions in some patients, but it does not work in all patients. Researchers have been divided over what mechanisms cause the drug to work. Some believe it works by reactivating fetal hemoglobin, which is better at transporting oxygen than the abnormal hemoglobin that causes sickling. Others believe it works by increasing the volume of red blood cells, reducing the concentration of sickle hemoglobin.

In the current study, the international research team evaluated the biophysical properties -- shape, surface area and volume -- and biomechanical properties -- flexibility and stickiness -- of red blood cells under normal oxygenated conditions using electromagnetic waves to measure small differences in physical properties. The technique, known as common-path interferometric microscopy, allowed researchers to get a three-dimensional view of the cells.

Using blood samples from patients with sickle cell disease, the researchers separated red blood cells into four groups based on their density. Normal, disc-shaped red blood cells were the least dense, while severely sickled cells were the most dense. They then took samples from people receiving hydroxyurea treatment and those not receiving treatment. The red blood cells of those receiving treatment showed an improvement in all of the biophysical and biomechanical properties tested across all density levels. Furthermore, improvement in the physical properties of red blood cells of people treated with hydroxyurea correlated more with an increase in the red blood cell volume than with levels of fetal hemoglobin.

"Our findings shine a light on the mechanism behind hydroxyurea action, which has long been debated in the scientific community," said Ming Dao, principal research scientist in MIT's Department of Materials Science and Engineering and co-author of the study. "It's exciting to see that using the latest optical imaging tools, we can now confirm which one is the dominating mechanism. Understanding the key mechanism of action will allow us to explore novel and improved therapeutic approaches for sickle cell disease."

The researchers hope that these biophysical markers can be combined with biochemical and molecular-level markers to assess things like the severity of a patient's sickle cell disease, determine whether or not a patient will respond to hydroxyurea treatment and monitor the effectiveness of that treatment.

###

Other co-authors of the study are: Poorya Hosseini, Sabia Z. Abidi, Dimitrios P. Papageorgiou, Zahid Yaqoob and Peter T. C. So of MIT; E Du of Florida Atlantic University; Youngwoon Choi of Korea University; YongKeun Park of the Korea Advanced Institute of Science and Technology; John M. Higgins of Harvard; and Gregory J. Kato of the University of Pittsburgh.

The research was funded by the National Institutes of Health (1R01HL121386-01A1, 9P41EB015871-26A1, 5R01NS051320, 5U01HL114476, 4R44EB012415), the National Science Foundation (CBET-0939511), Hamamatsu Corporation, Singapore-MIT Alliance for Research & Technology (SMART) Center, MIT SkolTech Initiative; and Koch Institute for Integrative Cancer Research Bridge Project Initiative.

Media Contact

Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982

 @CMUScience

http://www.cmu.edu 

Jocelyn Duffy | EurekAlert!

Further reports about: blood cells hemoglobin markers red blood cells volume

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>