Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of ‘alert status’ area in brain by Hebrew University scientists ...

14.09.2009
... opens door to future treatment of disorders of impaired consciousness

A new understanding of how anesthesia and anesthesia-like states are controlled in the brain opens the door to possible new future treatments of various states of loss of consciousness, such as reversible coma, according to Hebrew University of Jerusalem scientists.

In an article published in the Journal of Neuroscience, the scientists, Marshall Devor, the Cecile and Seymour Alpert Professor of Pain Research, graduate student Ruth Abulafia and research associate Dr. Vladimir Zalkind describe their discovery of an area of the brain that participates in the control of “alert status.”

Loss of response to painful stimuli and loss of consciousness are the most striking characteristics of surgical anesthesia and anesthesia-like states, such as concussion, reversible coma, and syncope (fainting). These states also exhibit behavioral suppression, loss of muscle tone, a shift to the sleep-like “delta-wave” EEG pattern, and depressed brain metabolism.

It has been widely presumed that this constellation of dramatic functional changes reflects widely distributed suppression of neuronal activity in the brain due to dispersed drug action, or to global oxygen or nutrient starvation.

However, new results revealed by the Hebrew University scientists suggest a radically different architecture -- that a small group of neurons near the base of the brain, in the mesopontine tegmentum, has executive control over the alert status of the entire cerebrum and spinal cord, and can generate loss of pain sensation, postural collapse and loss of consciousness through specific neural circuitry.

This conclusion derives from the observation that microinjection of tiny quantities of certain anesthetic drugs into this newly discovered “center of consciousness” in laboratory rats induced a profound suppressive effect on the activity of the cerebral cortex.

It is not certain that these results will translate reliably from rats to man. But if they do, there are at least two implications of considerable interest. First, this knowledge could contribute to the ability of medical science to treat disorders of consciousness and its loss, such as insomnia, excessive sleepiness and even coma. Perhaps by direct electrical stimulation of the cells in question, it might prove possible to arouse a patient from coma.

Second, the discovery of a specific cluster of neurons that control the brain’s state of consciousness can be expected to lead to the beginnings of an understanding of the actual wiring diagram that permits a biological machine, the brain, to be conscious.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>