Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may aid vaccine design for common form of malaria

10.01.2014
A form of malaria common in India, Southeast Asia and South America attacks human red blood cells by clamping down on the cells with a pair of proteins, new research at Washington University School of Medicine in St. Louis has revealed.

The study provides details that will help scientists design better vaccines and drug treatments for the strain, Plasmodium vivax.

"More people live at risk of infection by this strain of malaria than any other," said senior author Niraj Tolia, PhD, assistant professor of molecular microbiology and of biochemistry and molecular biophysics. "We now are using what we have learned to create vaccines tailored to stop the infectious process by preventing the parasite from attaching to red blood cells."

The finding appears Jan. 9 in PLOS Pathogens.

The World Health Organization estimates there were more than 200 million malaria cases in 2012. The deadliest form of malaria, Plasmodium falciparum, is most prevalent in Africa. But P. vivax can hide in the liver, re-emerging years later to trigger new infections, and is harder to prevent, diagnose and treat.

Earlier studies had suggested that one P. vivax protein binds to one protein on the surface of red blood cells. Tolia's new study reveals that the binding is a two-step process that involves two copies of a parasite protein coming together like tongs around two copies of a host protein.

"It's a very intricate and chemically strong interaction that was not easily understood before," Tolia said. "We have had hints that other forms of malaria, including the African strain, may be binding in a similar fashion to host cells, but this is one of the first definitive proofs of this kind of attack."

Tolia suspects blocking any of the proteins with drugs or vaccines will stop the infectious process.

"For example, some people have a mutation that eliminates the protein on red blood cell surfaces that P. vivax binds to, and they tend to be resistant to the parasite," he said. "This is why this strain isn't prevalent in Africa — evolutionary pressure has caused most of the populations there to stop making this protein."

Tolia also found evidence that other people with immunity to P. vivax have developed naturally occurring antibodies that attach to a key part of the parasite's binding protein, preventing infection.

"The parasite protein is very large, and human antibodies bind to it at many different points along its length," Tolia explained. "We have observed that the ones that are most effective so far are the antibodies that bind to the protein at the region highlighted by our new research."

This research was made possible by funding from the National Institute for Allergy and Infectious Diseases of the National Institutes of Health (NIH) (R01 080792), the Edward Mallinckrodt, Jr. Foundation, an American Heart Association postdoctoral fellowship, and a National Science Foundation Graduate Research Fellowship (DGE-1143954).

Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Heinzler-Wildman KA, Tolia NH. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLOS Pathogens, online Jan. 9, 2014.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Fiber optic biosensor-integrated microfluidic chip to detect glucose levels
29.04.2016 | The Optical Society

nachricht Got good fat?
27.04.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>