Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries about severe malaria

22.05.2012
Seattle BioMed, University of Copenhagen and University of Edinburgh report findings that could lead to new interventions

Researchers from Seattle Biomedical Research Institute (Seattle BioMed), the University of Copenhagen and the University of Edinburgh have uncovered new knowledge related to host-parasite interaction in severe malaria, concerning how malaria parasites are able to bind to cells in the brain and cause cerebral malaria – the most lethal form of the disease.

Three related papers will be published in the May 21 online edition of PNAS (Proceedings of the National Academy of Sciences), a premier scientific journal, highlighting this research.

"Identifying the molecules that allow malaria parasites to 'stick' to the brain takes us one step closer to new treatments," said Joseph Smith, Ph.D., leader of the Seattle team.

Red blood cells infected with the malaria parasite Plasmodium falciparum, the type most lethal to humans, bind to receptors on cells lining blood vessel walls, which helps the parasite avoid being detected and killed by the spleen. The binding is mediated by one of several members of a family of parasite proteins called P. falciparum erythrocyte membrane protein 1, or PfEMP1. A single PfEMP1 mediates placental malaria – the cause of malaria during pregnancy, which kills thousands of women and causes premature births and low-birth weight babies each year – but other PfEMP1 types causing life-threatening disease in young children are unknown.

To hone in on specific PfEMP1 types associated with severe malaria, Thomas Lavstsen, Ph.D., and his team from the University of Denmark used molecular techniques to compare the levels of different PfEMP1 transcripts in blood samples from children hospitalized in the pediatric ward of the Korogwe District Hospital in Tanzania. "Our research revealed that genes encoding two distinct types of PfEMP1 - named domain cassettes 8 and 13 - were tied to cases of severe malaria, suggesting that those proteins might be suitable targets in efforts aimed at curbing the disease," explained Lavstsen. Co-author Louise Turner, Ph.D. adds "Another important aspect of our study is that we show these PfEMP1 domain cassettes are recognized by natural acquired immunity in young African children, which gives us hope that we can base a vaccine on the discovered PfEMP1 types."

In a related paper in this issue, Antoine Claessens, Ph.D., who works in the lab of Alexandra Rowe, D. Phil., of the University of Edinburgh, reports that these particular PfEMP1 types – domain cassettes 8 and 13 – mediate the binding of infected red blood cells to cells that line blood vessels in the brain. "This provides us with new molecules that could be targeted to develop drugs to treat the most deadly forms of malaria," said Rowe. "In addition, because animal models for cerebral malaria are currently unavailable, we believe our findings might lead to a laboratory tool for testing drugs and vaccines that block the binding of the parasite to blood vessels in the brain."

Marion Avril, Ph.D., who works in the Smith lab at Seattle BioMed, reports in this issue that domain cassette 8 encodes binding activity for brain blood vessel cells. Additionally, the authors uncovered a potential explanation for the evolutionary persistence of parasite protein variants that mediate cerebral malaria, an often-fatal disease that tends to wipe out the parasite's host.

"Because those brain-binding variants can also bind to blood vessels in the skin, heart, and lung, the parasite might sequester in those organs," Smith explained. "Together, the findings could help researchers better address the lingering problem of childhood malaria."

"It's been a 15-year journey since this gene family was discovered, but the coming together of these three studies, which all identify the same key players in severe malaria, is an important milestone," said Rowe. "We're excited to have this knowledge and begin to apply it to developing new solutions for malaria."

ABOUT SEATTLE BIOMEDICAL RESEARCH INSTITUTE:

Seattle BioMed is the largest independent, non-profit organization in the U.S. focused solely on infectious disease research. Our research is the foundation for new drugs, vaccines and diagnostics that benefit those who need our help most: the 14 million who will otherwise die each year from infectious diseases, including malaria, HIV/AIDS and tuberculosis. Founded in 1976, Seattle BioMed has nearly 400 staff members. By partnering with key collaborators around the globe, we ensure that our discoveries will save lives sooner. For more information, visit www.seattlebiomed.org.
ABOUT UNIVERSITY OF COPENHAGEN:

With more than 37,000 students and 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark. The Centre for Medical Parasitology (CMP) is a collaboration between University of Copenhagen and Rigshospitalet and the centre's research is focused on malaria. CMP is part of a well-established international scientific network, composed of scientist in Europe, Africa, America and Australia. More than 60 scientists and technicians are affiliated at CMP. For more information, please visit www.cmp.ku.dk/english.
ABOUT THE UNIVERSITY OF EDINBURGH:

The University of Edinburgh is ranked among the top universities in the world, with more than 30,000 students and 7,000 staff. In 2010/11 its turnover was £651 million. For more information please see www.ed.ac.uk.

For more information, contact:

Lee Schoentrup, Communications Director
206.256.7440 or lee.schoentrup@seattlebiomed.org
Jennifer Mortensen, Senior Communications Specialist
206.256.7220 or jennifer.mortensen@seattlebiomed.org
Kathrine Storm, Communications Officer, University of Copenhagen
45 23 82 80 24 or mkstorm@sund.ku.dk
Catriona Kelly, Press and PR Officer, University of Edinburgh
44 131 650 4401 or catriona.kelly@ed.ac.uk

Jennifer Mortensen | EurekAlert!
Further information:
http://www.seattlebiomed.org
http://www.ed.ac.uk

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>