Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries about severe malaria

22.05.2012
Seattle BioMed, University of Copenhagen and University of Edinburgh report findings that could lead to new interventions

Researchers from Seattle Biomedical Research Institute (Seattle BioMed), the University of Copenhagen and the University of Edinburgh have uncovered new knowledge related to host-parasite interaction in severe malaria, concerning how malaria parasites are able to bind to cells in the brain and cause cerebral malaria – the most lethal form of the disease.

Three related papers will be published in the May 21 online edition of PNAS (Proceedings of the National Academy of Sciences), a premier scientific journal, highlighting this research.

"Identifying the molecules that allow malaria parasites to 'stick' to the brain takes us one step closer to new treatments," said Joseph Smith, Ph.D., leader of the Seattle team.

Red blood cells infected with the malaria parasite Plasmodium falciparum, the type most lethal to humans, bind to receptors on cells lining blood vessel walls, which helps the parasite avoid being detected and killed by the spleen. The binding is mediated by one of several members of a family of parasite proteins called P. falciparum erythrocyte membrane protein 1, or PfEMP1. A single PfEMP1 mediates placental malaria – the cause of malaria during pregnancy, which kills thousands of women and causes premature births and low-birth weight babies each year – but other PfEMP1 types causing life-threatening disease in young children are unknown.

To hone in on specific PfEMP1 types associated with severe malaria, Thomas Lavstsen, Ph.D., and his team from the University of Denmark used molecular techniques to compare the levels of different PfEMP1 transcripts in blood samples from children hospitalized in the pediatric ward of the Korogwe District Hospital in Tanzania. "Our research revealed that genes encoding two distinct types of PfEMP1 - named domain cassettes 8 and 13 - were tied to cases of severe malaria, suggesting that those proteins might be suitable targets in efforts aimed at curbing the disease," explained Lavstsen. Co-author Louise Turner, Ph.D. adds "Another important aspect of our study is that we show these PfEMP1 domain cassettes are recognized by natural acquired immunity in young African children, which gives us hope that we can base a vaccine on the discovered PfEMP1 types."

In a related paper in this issue, Antoine Claessens, Ph.D., who works in the lab of Alexandra Rowe, D. Phil., of the University of Edinburgh, reports that these particular PfEMP1 types – domain cassettes 8 and 13 – mediate the binding of infected red blood cells to cells that line blood vessels in the brain. "This provides us with new molecules that could be targeted to develop drugs to treat the most deadly forms of malaria," said Rowe. "In addition, because animal models for cerebral malaria are currently unavailable, we believe our findings might lead to a laboratory tool for testing drugs and vaccines that block the binding of the parasite to blood vessels in the brain."

Marion Avril, Ph.D., who works in the Smith lab at Seattle BioMed, reports in this issue that domain cassette 8 encodes binding activity for brain blood vessel cells. Additionally, the authors uncovered a potential explanation for the evolutionary persistence of parasite protein variants that mediate cerebral malaria, an often-fatal disease that tends to wipe out the parasite's host.

"Because those brain-binding variants can also bind to blood vessels in the skin, heart, and lung, the parasite might sequester in those organs," Smith explained. "Together, the findings could help researchers better address the lingering problem of childhood malaria."

"It's been a 15-year journey since this gene family was discovered, but the coming together of these three studies, which all identify the same key players in severe malaria, is an important milestone," said Rowe. "We're excited to have this knowledge and begin to apply it to developing new solutions for malaria."

ABOUT SEATTLE BIOMEDICAL RESEARCH INSTITUTE:

Seattle BioMed is the largest independent, non-profit organization in the U.S. focused solely on infectious disease research. Our research is the foundation for new drugs, vaccines and diagnostics that benefit those who need our help most: the 14 million who will otherwise die each year from infectious diseases, including malaria, HIV/AIDS and tuberculosis. Founded in 1976, Seattle BioMed has nearly 400 staff members. By partnering with key collaborators around the globe, we ensure that our discoveries will save lives sooner. For more information, visit www.seattlebiomed.org.
ABOUT UNIVERSITY OF COPENHAGEN:

With more than 37,000 students and 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark. The Centre for Medical Parasitology (CMP) is a collaboration between University of Copenhagen and Rigshospitalet and the centre's research is focused on malaria. CMP is part of a well-established international scientific network, composed of scientist in Europe, Africa, America and Australia. More than 60 scientists and technicians are affiliated at CMP. For more information, please visit www.cmp.ku.dk/english.
ABOUT THE UNIVERSITY OF EDINBURGH:

The University of Edinburgh is ranked among the top universities in the world, with more than 30,000 students and 7,000 staff. In 2010/11 its turnover was £651 million. For more information please see www.ed.ac.uk.

For more information, contact:

Lee Schoentrup, Communications Director
206.256.7440 or lee.schoentrup@seattlebiomed.org
Jennifer Mortensen, Senior Communications Specialist
206.256.7220 or jennifer.mortensen@seattlebiomed.org
Kathrine Storm, Communications Officer, University of Copenhagen
45 23 82 80 24 or mkstorm@sund.ku.dk
Catriona Kelly, Press and PR Officer, University of Edinburgh
44 131 650 4401 or catriona.kelly@ed.ac.uk

Jennifer Mortensen | EurekAlert!
Further information:
http://www.seattlebiomed.org
http://www.ed.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>