Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries linking gut bacteria with cholesterol metabolism give hope for the future

18.02.2013
Researchers at the Sahlgrenska Academy, University of Gothenburg, Sweden, show that cholesterol metabolism is regulated by bacteria in the small intestine. These findings may be important for the development of new drugs for cardiovascular disease.

It is well established that cholesterol is the major risk factor for cardiovascular disease. Cholesterol – which is mainly synthesized in the body but also obtained from dietary sources – is converted to bile acids in the liver, which are then secreted into the intestine and either removed from the body or recycled back to the liver.

The influence of gut bacteria on human health and disease is a rapidly expanding research area. Fredrick Bäckhed’s research group is a leader in this field and is investigating how gut bacteria are linked to lifestyle diseases such as obesity, diabetes and cardiovascular disease.

In a study published in the prestigious journal Cell Metabolism, they show that gut bacteria reduce bile acid synthesis in the liver by signaling through a specific protein, known as the FXR receptor, in the small intestine.

‘Drugs that reduce cholesterol levels have, in recent years, greatly reduced deaths from cardiovascular disease. Our study is a step forward because we have shown how gut bacteria regulate the formation of bile acids from cholesterol’, says Sama Sayin, medical doctor and PhD student at the Sahlgrenska Academy, University of Gothenburg, and the study's first author.

The FXR receptor not only affects cholesterol metabolism but is also involved in the body's sugar and fat metabolism.

‘If future research can identify the specific bacteria that affect FXR signaling in the gut, this could lead to new ways to treat diabetes and cardiovascular disease’, says Fredrik Bäckhed, professor at the Sahlgrenska Academy, University of Gothenburg, who led the study.

The article ‘Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-betamuricholic acid, a naturally occurring FXR antagonist’ is published in Cell Metabolism on February 5. The study is a collaboration with researchers from VTT in Finland, the Karolinska Institute and AstraZeneca in Mölndal.

The Wallenberg Laboratory: http://www.wlab.gu.se/

Contact:
Fredrick Bäckhed, professor at the Sahlgrenska Academy, University of Gothenburg, and director of the Wallenberg Laboratory, University of Gothenburg
+ 46 (0) 31-342 7833
+ 46 (0) 70-2182355
fredrik.backhed@wlab.gu.se
Sama Sayin, PhD student at the Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg
+ 46 (0) 31-342 8672
+ 46 (0) 73-1541051
sama.sayin@wlab.gu.se

Annika Koldenius | idw
Further information:
http://www.gu.se
http://www.wlab.gu.se/

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>