Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in dopamine may determine how hard people work

02.05.2012
Human study suggests biological basis for individual differences in behavior

Whether someone is a "go-getter" or a "slacker" may depend on individual differences in the brain chemical dopamine, according to new research in the May 2 issue of The Journal of Neuroscience. The findings suggest that dopamine affects cost-benefit analyses.

The study found that people who chose to put in more effort — even in the face of long odds — showed greater dopamine response in the striatum and ventromedial prefrontal cortex, areas of the brain important in reward and motivation. In contrast, those who were least likely to expend effort showed increased dopamine response in the insula, a brain region involved in perception, social behavior, and self-awareness.

Researchers led by Michael Treadway, a graduate student working with David Zald, PhD, at Vanderbilt University, asked participants to rapidly press a button in order to earn varying amounts of money. Participants got to decide how hard they were willing to work depending on the odds of a payout and the amount of money they could win. Some accepted harder challenges for more money even against long odds, whereas less motivated subjects would forgo an attempt if it cost them too much effort.

In a separate session, the participants underwent a type of brain imaging called positron emission tomography (PET) that measured dopamine system activity in different parts of the brain. The researchers then examined whether there was a relationship between each individual's dopamine responsiveness and their scores on the motivational test described earlier.

Previous rodent research also showed that dopamine activity in motivational centers is important for long-shot decisions. However, in the current study, the researchers were surprised to find that those with increased dopamine activity in the insula were the least likely to expend effort on the task. "These results show for the first time that increased dopamine in the insula is associated with decreased motivation — suggesting that the behavioral effects of dopaminergic drugs may vary depending on where they act in the brain," said lead study author Treadway.

"Previous research has indicated that dopamine influences the motivation to seek out rewards. Now, this elegant new study provides the clearest evidence to date that individual differences in dopamine-related motivation might be a trait," said Marco Leyton, PhD, an expert on dopamine at McGill University, who was not involved in the study. "A striking implication highlighted by the authors is that abnormal dopamine transmission could affect a wide range of decision-making processes and susceptibility to depression."

This research was supported by the National Institute on Drug Abuse and the National Institute on Mental Health.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 42,000 basic scientists and clinicians who study the brain and nervous system. More information on decision-making can be found in the Society's Brain Briefings.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

Further reports about: Neuroscience decision-making process differences

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>