Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in dopamine may determine how hard people work

02.05.2012
Human study suggests biological basis for individual differences in behavior

Whether someone is a "go-getter" or a "slacker" may depend on individual differences in the brain chemical dopamine, according to new research in the May 2 issue of The Journal of Neuroscience. The findings suggest that dopamine affects cost-benefit analyses.

The study found that people who chose to put in more effort — even in the face of long odds — showed greater dopamine response in the striatum and ventromedial prefrontal cortex, areas of the brain important in reward and motivation. In contrast, those who were least likely to expend effort showed increased dopamine response in the insula, a brain region involved in perception, social behavior, and self-awareness.

Researchers led by Michael Treadway, a graduate student working with David Zald, PhD, at Vanderbilt University, asked participants to rapidly press a button in order to earn varying amounts of money. Participants got to decide how hard they were willing to work depending on the odds of a payout and the amount of money they could win. Some accepted harder challenges for more money even against long odds, whereas less motivated subjects would forgo an attempt if it cost them too much effort.

In a separate session, the participants underwent a type of brain imaging called positron emission tomography (PET) that measured dopamine system activity in different parts of the brain. The researchers then examined whether there was a relationship between each individual's dopamine responsiveness and their scores on the motivational test described earlier.

Previous rodent research also showed that dopamine activity in motivational centers is important for long-shot decisions. However, in the current study, the researchers were surprised to find that those with increased dopamine activity in the insula were the least likely to expend effort on the task. "These results show for the first time that increased dopamine in the insula is associated with decreased motivation — suggesting that the behavioral effects of dopaminergic drugs may vary depending on where they act in the brain," said lead study author Treadway.

"Previous research has indicated that dopamine influences the motivation to seek out rewards. Now, this elegant new study provides the clearest evidence to date that individual differences in dopamine-related motivation might be a trait," said Marco Leyton, PhD, an expert on dopamine at McGill University, who was not involved in the study. "A striking implication highlighted by the authors is that abnormal dopamine transmission could affect a wide range of decision-making processes and susceptibility to depression."

This research was supported by the National Institute on Drug Abuse and the National Institute on Mental Health.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 42,000 basic scientists and clinicians who study the brain and nervous system. More information on decision-making can be found in the Society's Brain Briefings.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

Further reports about: Neuroscience decision-making process differences

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>