Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Differences in cell response could explain higher rates of hypertension in African-Americans

A key difference in the way that cells from African-Americans respond to inflammation could be an answer to why this group is disproportionately affected by hypertension, something that has eluded scientists for many years.

In a study published this month in Vascular Health and Risk Management, lead author Michael Brown and his team tested the effects of TNF-Ü, a protein that causes inflammation when cells are damaged, on endothelial cells – which line blood vessels – in both African-Americans and Caucasians, to determine whether the inflammation affected the cells differently.

Among African-American cells, there was a nearly 90 percent increase in the production of endothelial microparticles, small vesicles that are released during inflammation. Individuals with hypertension have been shown to have higher levels of these microparticles in their bloodstream. Among Caucasians, there was only an eight percent increase in their production.

Brown said that although follow-up research needed to be done, "it appears that the endothelial cells in African Americans are more susceptible to the damaging effects of this inflammation." Brown is the director of the Hypertension Molecular and Applied Physiology Laboratory at Temple's College of Health Professions and Social Work.

Brown's research is unique in that it focuses on studying risk of hypertension at the cellular level; most research focuses on the clinical or physiological aspect. For more than 10 years, Brown has been trying to unlock the genetic reason behind the higher rates of hypertension and cardiovascular disease among African Americans.

Brown's research includes an exercise component, to test whether physical activity can reverse or prevent the damage done by hypertension at the cellular level.

"In our human study we have pre-hypertensive African-Americans, and we find this level of endothelial impairment. Knowing so early how inflammation can affect cells means we can be at a place to intervene before they go on to develop hypertension," said Brown. "That intervention could be lifestyle modification, diet and exercise to improve vascular health."

Other authors on this study are Deborah Feairheller, Sunny Thakkar, Praveen Veerabhadrappa and Joon-Young Park of the department of kinesiology. Funding for this study was provided by the National Heart Lung and Blood Institute at the National Institutes of Health.

Renee Cree | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>