Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do some diabetics escape complications?

21.01.2011
Much research has been carried out on why diabetics develop complications. Now researchers are asking the question the other way around. They want to know why some diabetic patients do not develop complications. What is it that protects them? The PROLONG study could provide the answer.

“The majority of diabetics will over time develop severe or fatal complications, but 10–15 per cent never do. They are the ones we are interested in in the PROLONG study”, explains Valeriya Lyssenko, who along with Peter Nilsson, both from Lund University Diabetes Centre, in Sweden, leads the PROLONG study.

Stiff sugary arteries
Despite decades of intensive research on diabetes complications, the fundamental mechanisms are not yet fully known. Neither is it possible to prevent or treat the damage to the blood vessels that affects the majority of diabetics.

The risk of dying from cardiovascular disease is two to three times higher for diabetics than for non-diabetics. The small blood vessels are also damaged. After only ten years with diabetes, 70 per cent of patients will have some form of kidney damage that may progress to kidney failure. As many suffer from eye complications – some will develop severe visual impairment and two per cent will become blind.

“The blood vessels and other organs of the body become sugar coated and stiff. It is reminiscent of premature biological ageing”, says Peter Nilsson.

Half of the veterans
Perhaps nature itself can answer the question of why some patients are protected. This is what the PROLONG study will investigate.

Today there are approximately 12 000 people in Sweden who have had diabetes for more than 30 years; of these, 1 600 have had it for over 50 years.

“About half of these diabetic veterans do not have major complications. Two thirds of those who have had diabetes for more than 50 years have escaped complications. Clearly they are different and we want to find out what it is that protects them”, says Valeriya Lyssenko.

Greatest risk passed after 30 years
The PROLONG study is starting now in Skåne with a pilot study of patients with diabetes duration of more than 30 years. At a later stage patients will be recruited from all hospitals and health care centres in Sweden. They will be compared with diabetics who have already developed severe complications despite having had diabetes for less than 15 years.

The 30-year limit has been chosen because a person who has had diabetes for such a long time without developing complications is unlikely to do so later in life.

Copying nature’s protective mechanisms
Participants in the PROLONG study will answer questions about their lifestyle and about diseases they, or their closest relatives, may have. Various blood samples, including genetic tests, will be analysed, and close relatives of the participants will also be invited to take part in the study.

“If we can identify factors protecting these veterans from devastating complications, then it might be possible to develop drugs that can do the same thing”, says Valeriya Lyssenko.

“I have dreamt of performing a study like this for a long time”, adds Peter Nilsson.

PROLONG stands for PROtective genes in diabetes and LONGevity

Major diabetic complications include kidney disease (nephropathy), eye damage (retinopathy), heart attacks and stroke.

For more information:
Valeriya Lyssenko, +46 40 39 12 14, +46 730 42 73 52
Valeriya.Lyssenko@med.lu.se
Peter Nilsson, +46 40 33 24 15, +46 704 50 34 56
Peter.Nilsson@med.lu.se

Megan Grindlay | idw
Further information:
http://www.lu.se

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>