Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes drug metformin with chemo and radiation may improve outcomes in lung cancer patients

24.10.2013
Metformin could serve as a radiosensitizer to treat patients with stage III non-small cell lung cancer

Treating aggressive lung cancer with the diabetes drug metformin along with radiation and chemotherapy may slow tumor growth and recurrence, suggests new preliminary findings from researchers at the Perelman School of Medicine at the University of Pennsylvania being presented during an oral abstract session October 28 at the 15th World Conference on Lung Cancer.

The preclinical and clinical results, which have set the stage for a first-of-its-kind prospective study, point to metformin as an effective radiosensitizer—a drug that makes tumor cells more sensitive to radiation therapy—to treat stage III non-small cell lung cancer (NSCLC). Because of poor local response and five-year survival rates around 15 percent in late-stage NSCLC patients, well-tolerated, combination therapies are greatly needed.

The abstract is being presented by Ildiko Csiki, MD, PhD, an assistant professor of Radiation Oncology at Penn's Abramson Cancer Center.

Metformin, the most-widely used drug for type-2 diabetes, has been shown to have anti-cancer effects on a number of cancers, including prostate and colon. It activates AMP-related pathways, leading to inactivation of mTOR and suppression of its downstream effectors, a crucial signaling pathway for proliferation and survival of cancer. However, little data exists to support its role in NSCLC. And its role as a radiosensitizer in lung cancer is even less understood.

For this study, clinical evidence from 16 diabetic patients treated at the Hospital of the University of Pennsylvania between June 2008 and June 2013 with stage III A and B NSCLC and diabetes demonstrated that chemoradiation therapy in combination with metformin dramatically improved local recurrence. With a median follow-up time of 10.4 months, only two local recurrences have occurred.

Researchers also observed a survival benefit with the combination.

"Our clinical experience demonstrates patients receiving definitive chemoradiation for stage III NSCLC who took metformin for diabetes had improved local control and overall survival compared with our patients not taking metformin and compared with historical controls," said Dr. Csiki.

On the preclinical side, Penn researchers developed a mouse model of lung cancer to evaluate the tumor growth delay after using metformin as a radiosensitizing agent. They tracked tumor size in mice injected with metformin undergoing radiation and chemotherapy. Tumor measurements were taken every other day and tumor growth delay was plotted.

Early data from those experiments supports the use of metformin as a radiosensitizing agent, said Dr. Csiki.

"Such findings, along with our clinical retrospective data, will lead to institutional prospective clinical trials, for the first-time, using metformin as a radiosensitizing agent in combination with radiation therapy and chemotherapy in the treatment of lung and potentially other cancers," the authors write.

Co-authors from Penn Medicine include Charles B. Simone, Marina Heskel, Peter Gabriel, Hyun Kim, Souvik Dey, Costas Koumenis, and Michael N. Corradetti from Harvard.

This study is one of a 13 Penn Medicine studies and talks being presented at the International Association for the Study of Lung Cancer's 15th World Conference on Lung Cancer.

Steve Graff | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>