Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes drug metformin with chemo and radiation may improve outcomes in lung cancer patients

24.10.2013
Metformin could serve as a radiosensitizer to treat patients with stage III non-small cell lung cancer

Treating aggressive lung cancer with the diabetes drug metformin along with radiation and chemotherapy may slow tumor growth and recurrence, suggests new preliminary findings from researchers at the Perelman School of Medicine at the University of Pennsylvania being presented during an oral abstract session October 28 at the 15th World Conference on Lung Cancer.

The preclinical and clinical results, which have set the stage for a first-of-its-kind prospective study, point to metformin as an effective radiosensitizer—a drug that makes tumor cells more sensitive to radiation therapy—to treat stage III non-small cell lung cancer (NSCLC). Because of poor local response and five-year survival rates around 15 percent in late-stage NSCLC patients, well-tolerated, combination therapies are greatly needed.

The abstract is being presented by Ildiko Csiki, MD, PhD, an assistant professor of Radiation Oncology at Penn's Abramson Cancer Center.

Metformin, the most-widely used drug for type-2 diabetes, has been shown to have anti-cancer effects on a number of cancers, including prostate and colon. It activates AMP-related pathways, leading to inactivation of mTOR and suppression of its downstream effectors, a crucial signaling pathway for proliferation and survival of cancer. However, little data exists to support its role in NSCLC. And its role as a radiosensitizer in lung cancer is even less understood.

For this study, clinical evidence from 16 diabetic patients treated at the Hospital of the University of Pennsylvania between June 2008 and June 2013 with stage III A and B NSCLC and diabetes demonstrated that chemoradiation therapy in combination with metformin dramatically improved local recurrence. With a median follow-up time of 10.4 months, only two local recurrences have occurred.

Researchers also observed a survival benefit with the combination.

"Our clinical experience demonstrates patients receiving definitive chemoradiation for stage III NSCLC who took metformin for diabetes had improved local control and overall survival compared with our patients not taking metformin and compared with historical controls," said Dr. Csiki.

On the preclinical side, Penn researchers developed a mouse model of lung cancer to evaluate the tumor growth delay after using metformin as a radiosensitizing agent. They tracked tumor size in mice injected with metformin undergoing radiation and chemotherapy. Tumor measurements were taken every other day and tumor growth delay was plotted.

Early data from those experiments supports the use of metformin as a radiosensitizing agent, said Dr. Csiki.

"Such findings, along with our clinical retrospective data, will lead to institutional prospective clinical trials, for the first-time, using metformin as a radiosensitizing agent in combination with radiation therapy and chemotherapy in the treatment of lung and potentially other cancers," the authors write.

Co-authors from Penn Medicine include Charles B. Simone, Marina Heskel, Peter Gabriel, Hyun Kim, Souvik Dey, Costas Koumenis, and Michael N. Corradetti from Harvard.

This study is one of a 13 Penn Medicine studies and talks being presented at the International Association for the Study of Lung Cancer's 15th World Conference on Lung Cancer.

Steve Graff | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>