Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device holds promise of making blood glucose testing easier

16.03.2011
ASU, Mayo Clinic team work to help diabetes patients

People with diabetes could be helped by a new type of self-monitoring blood glucose sensor being developed by ASU engineers and clinicians at Mayo Clinic in Arizona.

More than 23 million people in the United States have diabetes. The disease is the fifth leading cause of death in the United States. It contributes to a higher risk for heart disease, blindness, kidney failure, lower extremity amputations and other chronic conditions.

Many people with diabetes are tasked with the difficulty of managing their blood glucose levels. It’s recommended that they monitor their own glucose levels, but current monitoring devices typically require patients to perform the painful task of pricking their finger to draw blood for a test sample – and many patients must do it several times each day.

The new sensor would enable people to draw tear fluid from their eyes to get a glucose-level test sample.

Glucose in tear fluid may give an indication of glucose levels in the blood as accurately as a test using a blood sample, the researchers say.

“The problem with current self-monitoring blood glucose technologies is not so much the sensor," says Jeffrey T. LaBelle, a bioengineer. "It’s the painful finger prick that makes people reluctant to perform the test. This new technology might encourage patients to check their blood sugars more often, which could lead to better control of their diabetes by a simple touch to the eye."

LaBelle, the designer of the device technology, is a research professor in the School of Biological and Health Systems Engineering, one of ASU’s Ira A. Fulton Schools of Engineering. He is leading the ASU-Mayo research team along with Mayo Clinic physicians Curtiss B. Cook, an endocrinologist, and Dharmendra (Dave) Patel, chair of Mayo’s Department of Surgical Ophthalmology. The team reported on their early work on the sensor in the Journal of Diabetes Science and Technology last year and at various regional and national conferences.

Because of its potential impact on health care, the technology has drawn interest from BioAccel, an Arizona nonprofit that works to accelerate efforts to bring biomedical technologies to the marketplace.

“A critical element to commercialization is the validation of technology through proof-of -concept testing,” says Nikki Corday, BioAccel business and development manager. “Positive results will help ensure that the data is available to help the research team clear the technical hurdles to commercialization.”

Researchers must now compile the proper data set to allow for approval of human testing of the device.

“With funding provided by BioAccel, the research team will conduct critical experiments to determine how well the new device correlates with use of the current technology that uses blood sampling,” says Ron King, BioAccel’s chief scientific and business officer.

The results should help efforts to secure downstream funding for further development work from such sources as the National Institutes of Health and the Small Business Incentive Research Program, King says.

BioAccel also will provide assistance using a network of technical and business experts, including the New Venture Group, a business consulting team affiliated with the W. P. Carey School of Business at ASU under the supervision of associate professor Daniel Brooks.

The ASU-Mayo research team began the project with funds from a seed grant from Mayo Clinic. Researchers got assistance in the laboratory from ASU students involved in research at ASU’s Biodesign Institute and the Ira A. Fulton Schools of Engineering Fulton Undergraduate Research Initiative program.

Team members assessed how current devices were working – or failing – and how others have attempted to solve monitoring problems, LaBelle says. They came up with a device that can be dabbed in the corner of the eye, absorbing a small amount of tear fluid like a wick that can then be used to measure glucose.

The major challenges are performing the test quickly, efficiently, with reproducible results, without letting the test sample evaporate and without stimulating a stress response that causes people to rub their eyes intensely, LaBelle says.

A study commissioned by the American Diabetes Association reported that in 2007 the national economic burden related to diabetes was more than $170 billion – including about $116 billion in additional health care costs and $58 billion in lost productivity from workers debilitated by the disease.

SOURCES:
Jeffrey LaBelle, jeffrey.labelle@asu.edu
Biodesign Institute at Arizona State University
(480) 727-9061
Ron King, info@bioaccel.org
BioAccel
(602) 385-3212
MEDIA CONTACTS:
Joe Kullman, joe.kullman@asu.edu
Ira A. Fulton Schools of Engineering
(480) 965-8122 direct line
(480) 773-1364 mobile
Lynn Closway, closway.lynn@mayo.edu
Mayo Clinic Public Affairs
(480) 301-4337

Joe Kullman | EurekAlert!
Further information:
http://www.asu.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>